Polyspace® Code Prover™
Reference

R2022b o/} MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Reference
© COPYRIGHT 2013-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021

March 2022

September 2022

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

Online Only

Online Only

Revised for Version 9.0 (Release 2013b)

Revised for Version 9.1 (Release 2014a)

Revised for Version 9.2 (Release 2014b)

Revised for Version 9.3 (Release 2015a)

Revised for Version 9.4 (Release 2015b)

Revised for Version 9.5 (Release 2016a)

Revised for Version 9.6 (Release 2016b)

Revised for Version 9.7 (Release 2017a)

Revised for Version 9.8 (Release 2017b)

Revised for Version 9.9 (Release 2018a)

Revised for Version 9.10 (Release 2018b)
Revised for Version 10.0 (Release 2019a)
Revised for Version 10.1 (Release 2019b)
Revised for Version 10.2 (Release 2020a)
Revised for Version 10.3 (Release 2020b)
Revised for Version 10.4 (Release 2021a)
Revised for Polyspace Code Prover Version 10.5,
Polyspace Code Prover Server Version 10.5, and
Polyspace Code Prover Access Version 2.5 (Release
2021b)

Revised for Polyspace Code Prover Version 10.6,
Polyspace Code Prover Server Version 10.6, and
Polyspace Access Version 4.0 (Release 2022a)
Revised for Polyspace Code Prover Version 10.7,
Polyspace Code Prover Server Version 10.7, and
Polyspace Access Version 4.1 (Release 2022b)

Introduction

1]

About This Reference 1-2

Polyspace Analysis Options

Analysis Options

2|

Analysis Options, Command-Line Only

3
Polyspace DOS/UNIX Commands

Polyspace DOS/Unix Commands

4

MATLAB and Simulink Functions, Classes, and Methods

Functions, Classes, Methods, Properties, and Apps

S|

Configuration Parameters

6|

Settingsfrom (C) 6-2
Settings o 6-2
DEePENdENCY . . .ottt 6-2
Command-Line Information 6-2

Settings from (C++) 6-4
Settings 6-4
Dependencyo ii e 6-4
Command-Line Information 6-4

Use custom projectfile 6-6
Settings e 6-6
DePENAENCY . . v vttt e 6-6

Contents

Command-Line Information

Project configuration
Settings o
DEePeNdencYottt e
Command-Line Information

Enable additional file list
Settings
Command-Line Information

Stub lookup tables
Setlings oo
TaDS o
Command-Line Information

Imput e
Setlings o
Command-Line Information

Tunable parameters
Setlings oo e
Command-Line Information

Output e
Settings o e
Command-Line Information

Model reference verificationdepth
Settings o e
Command-Line Information

Model by model verification
Settings
Command-Line Information

Output folder
Setlings
Command-Line Information

Make output folder name unique by adding a suffix
Setlings o e
Command-Line Information

Add results to current Simulink project
Settings o
Dependenciesttt
Command-Line Information

Open results automatically after verification
Settings o e
Command-Line Information

Check configuration before verification
Settings o e

viii

Command-Line Information 6-20

Verify all S-function occurrences 6-21
Settings o e 6-21
Command-Line Information 6-21

Polyspace Results: Run-Time Error and Global Variable Checks

Run-Time Checks

7

Global Variables

8|

Polyspace Results: Coding Standards

MISRA C 2012

9

MISRA C++: 2008

10|

Custom Coding Rules

11|

Group 1: Files e 11-2
Group 2: Preprocessing 11-3
Group 3: Type definitions 11-4
Group 4: Structures e 11-5
Group 5: Classes (C++) i, 11-6

Contents

Group 6: Enumerations 11-7

Group 7: Functions 11-8
Group 8:Constants 11-9
Group 9: Variables 11-10
Group 10: Name spaces (C++) 11-11
Group 11: Class templates (C++) 11-12
Group 12: Function templates (C++) 11-13
Group 20: Style 11-14

Polyspace Results: Code Metrics and Reports Components

Code Metrics

12
Polyspace Report Components

Report Components

13
Polyspace Code Prover Assumptions

Approximations Used During Verification

14|

Why Polyspace Verification Uses Approximations 14-2
Sources of Orange Checks 14-3
Constrain Orange SOUICESt v ittt e e e 14-4

Code Prover Assumptions About Variable Ranges From Data Types
... 14-6

ix

X

Contents

Code Prover Assumptions About Stubbed Functions
Function Return Value
Function Arguments That are Pointers
Global Variables

Code Prover Assumptions About main Function
main Function as Top of Call Hierarchy
main Function Arguments

Code Prover Assumptions About Global Variable Initialization . .
Global Variable Initialization When main Function Exists
Global Variable Initialization When main Function Does Not Exist
How Code Prover Implements Assumption About Global Variable

Initialization
What Initialization Means for Complex Data Types

Code Prover Assumptions About Volatile Variables
Global Volatile Variables
Local Volatile Variables
Volatile Parameters

Code Prover Assumptions About Boolean Variables
Code Prover Assumptions About Boolean Variables with Unknown
Values

Cases Where Boolean Variables Can Have Values Other Than 0 or 1

Code Prover Assumptions About Variable and Function Definitions
and Declarations
Definition
Declaration

Code Prover Assumptions About Implicit Data Type Conversions

Implicit Conversion When Operands Have Same Data Type
Implicit Conversion When Operands Have Different Data Types . .

Code Prover Assumptions About memset and memcpy
Polyspace Specifications formemcpy
Polyspace Specifications formemset

Code Prover Assumptions About #pragma Directives

Code Prover Assumptions About Standard Library Float Routines

Code Prover Assumptions About Unions

Code Prover Assumptions About Variables Cast as Void Pointers

Code Prover Assumptions About Assembly Code
Recognized Inline Assemblers
Single Function Containing Assembly Code

14-22
14-22
14-22

14-23
14-23
14-24
14-25
14-25
14-26

14-29

14-31

14-32

14-33

14-34
14-34
14-36

Multiple Functions Containing Assembly Code
Local Variables in Functions with Assembly Code

Determination of Program Stack Usage
Calculate Stack Usagettt
Investigate Possible Stack Overflow
Stack Usage Not Computed
Stack Usage Assumptions,

Limitations of Polyspace Verification

xi

Introduction

1

Introduction

About This Reference

1-2

This Reference covers all Polyspace Code Prover products:

* Polyspace Code Prover™
* Polyspace Code Prover Server™
* Polyspace Access™

Depending on how you set up a Code Prover run, you might be running an analysis from one of these
locations:

* Desktop: If you are running an analysis and reviewing the results on your desktop, you use
Polyspace Code Prover. More specifically, you use the Polyspace user interface or the
polyspace-code-prover command to run an analysis.

* Server: If you are running an analysis on a server, or reviewing the results from a server run on a
web browser, you use:
* Polyspace Code Prover Server, more specifically, the polyspace-code-prover-server
command, to run the analysis.
* Polyspace Access to host the analysis results (for review on a web browser).
Whatever your platform, the Code Prover analysis engine underlies all Code Prover products. In

particular, almost all analysis options and commands, and all result types are common to both
platforms.

Polyspace Analysis Options

Analysis Options

2 Analysis Options

2-2

Source code language (-1lang)

Specify language of source files

Description

Specify the language of your source files. Before specifying other configuration options, choose this
option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension . c C

Only files with extension .cpp or .cc CPP

Files with extension .c, .cpp, and . cc C-CPP

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-2 for ways in which the source code language can
be automatically determined.

Command line and options file: Use the option - lang. See “Command-Line Information” on page
2-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the verification to C
language conventions. All files are interpreted as C files, regardless of their file extension.

CPP

If your project contains only C++ files, choose this setting. This value restricts the verification to
C++ language conventions. All files are interpreted as C++ files, regardless of their file
extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows for C and C
++ language conventions. . ¢ files are interpreted as C files. Other file extensions are interpreted
as C++ files.

Dependencies

* The language option allows and disallows many options and option values. Some options change
depending on your language selection. For more information, see the individual analysis option

pages.

Source code language (-1lang)

+ Ifyou create a Polyspace project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is determined
by the file extensions.

For a project with both . c and . cpp files, the language option C-CPP is used. During the analysis,
each file is compiled based on the language standard determined by the file extensions. After the
compilation, Polyspace verifies such mixed projects as C++ projects.

Tips

For a project with both . c and . cpp files, if you use the language C-CPP, each file is compiled based
on the language standard determined by the file extensions. After the compilation, Polyspace verifies
such mixed projects as C++ projects.

In particular, the analysis links all files as C++ files. Because of differences in linking behavior
between C and C++, you might see differences in linking errors or warnings when C files in the
mixed C-C++ projects are compiled with language C-CPP versus language C.

Command-Line Information

Parameter: - lang

Value: ¢ | cpp| c-cpp

Default: Based on file extensions

Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"filel.c,file2.cpp"

Example (Code Prover): polyspace-code-prover -lang cpp -sources

"filel.cpp, file2.cpp"

Example (Bug Finder Server): polyspace-bug-finder-server -lang c-cpp -sources
"filel.c,file2.cpp"

Example (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"filel.cpp, file2.cpp"

Example (Bug Finder): polyspace-bug-finder -lang c -sources "filel.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources "filel.c,file2.c"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"filel.c,file2.c"

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"filel.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-3

2 Analysis Options

2-4

C standard version (-c-version)

Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-5 for other options that you must enable.

Command line and options file: Use the option -c-version. See “Command-Line Information” on
page 2-5.

Why Use This Option

Use this option so that Polyspace can allow features specific to a C standard version during
compilation. For instance, if you compile with GCC using the flag -ansi or -std=c90, specify c90
for this option. If you are not sure of the language standard, specify defined-by-compiler.

For instance, suppose you use the boolean data type Bool in your code. This type is defined in the
C99 standard but unknown in prior standards such as C90. If the Polyspace compilation follows the
C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard. For instance,
MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and name space shall be
distinct. If you use the C90 standard, different identifiers that have the same first 31 characters
violate this rule. If you use the C99 standard, the number of characters increase to 63.

Settings

Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

cll
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

See also “C11 Language Elements Supported in Polyspace”.

C standard version (-c-version)

cl7
The analysis uses the C17 Standard (ISO/IEC 9899:2018).

This version addresses defects in C11 Standard but does not introduce new language features.
The value of the STDC_VERSION macro is increased to 201710L.

Dependencies

» This option is available only if you set Source code language (-lang) to C or C-CPP.

» Ifyou create a project or options file from your build system using the polyspace-configure
command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses the hidden option -options-for-
sources to associate different standards with different files.

Command-Line Information

Parameter: -c-version

Value: defined-by-compiler | c90|c99|cll|cl7

Default: defined-by-compiler

Example (Bug Finder): polyspace-bug-finder -lang c -sources "filel.c,file2.c"
c-version c90

Example (Code Prover): polyspace-code-prover -lang c -sources "filel.c,file2.c"
-c-version c90

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"filel.c,file2.c" -c-version c90

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"filel.c,file2.c" -c-version c90

See Also
Source code language (-lang) | C++ standard version (-cpp-version)

Topics

“Specify Polyspace Analysis Options”

“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

2-5

2 Analysis Options

2-6

C++ standard version (-cpp-version)

Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-7 for other options that you must enable.

Command line and options file: Use the option -cpp-version. See “Command-Line Information”
on page 2-7.

Why Use This Option

Use this option so that Polyspace can allow features from a specific version of the C++ language
standard during compilation. For instance, if you compile with GCC using the flag - std=c++11 or -
std=gnu++11, specify cppl1l for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in the C++11
standard but unrecognized in prior standards such as C++03. If the Polyspace compilation uses the C
++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros specific to
the standard using compiler settings that you typically use. For instance, to check for C++11-specific
features, compile this code. The code contains a C++11-specific keyword nullptr. If the macro
__cplusplus is not 201103L (indicating C++11), this keyword is used and causes a compilation
error.
#if defined(_ cplusplus) && cplusplus >= 201103L

/* C++11 compiler */
#else

void* ptr = nullptr;
#endif

If the code compiles, use cppll for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

C++ standard version (-cpp-version)

cppo3
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

cppll
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

See also “C++11 Language Elements Supported in Polyspace”.

cppl4d
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

See also “C++14 Language Elements Supported in Polyspace”.

cppl7
The analysis uses the C++17 Standard (ISO/IEC 14882:2017).

See also “C++17 Language Elements Supported in Polyspace”.

Dependencies

* This option is available only if you set Source code language (-lang) to CPP or C-CPP.

» Ifyou create a project or options file from your build system using the polyspace-configure
command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses multiple standards for compiling the
files. The analysis uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information

Parameter: -cpp-version

Value: defined-by-compiler | cpp03 | cppll | cppl4d | cppl?

Default: defined-by-compiler

Example (Bug Finder): polyspace-bug-finder -lang c -sources "filel.c, file2.c"
cpp-version cppll

Example (Code Prover): polyspace-code-prover -lang c -sources "filel.c,file2.c"
-cpp-version cppll

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"filel.c,file2.c" -cpp-version cppll

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"filel.c,file2.c" -cpp-version cppll

See Also
Source code language (-lang) |C standard version (-c-version)
Topics

“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”

2-7

2 Analysis Options

“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”
“C++17 Language Elements Supported in Polyspace”

2-8

Target processor type (-target)

Target processor type (-target)

Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness of the target
machine. You can analyze code intended for an unlisted processor type by using one of the other
processor types, if they share common data properties.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that compiler. For
these compilers, you also cannot see the data type sizes in the user interface. See the links in the
table below for the data type sizes.

Command line and options file: Use the option -target. See “Command-Line Information” on
page 2-11.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored to the data
type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386 compared
to a 64-bit processor such as x86 64. If you select x86 64 for your Polyspace analysis, but deploy your
code to the i386 processor, your Polyspace results are not always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or unsigned.
To determine which signedness to specify, compile this code using the compiler settings that you
typically use:

#include <limits.h>
int array[(char)UCHAR MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC compiler, the code
compiles with the - fsigned-char flag and fails to compile with the - funsigned-char flag.

Settings
Default: 1386
This table shows the size of each fundamental data type that Polyspace considers. For some targets,

you can modify the default size by clicking the Edit button to the right of the Target processor type
drop-down list. The optional values for those targets are shown in [brackets] in the table.

2-9

2 Analysis Options

Target cha [short [int (lon |long (floa |double (long ptr |Default |endian |Align
r g long |t double? sign of ment
char
1386 8 16 32 32 |64 32 |64 96 32 |[signed Little 32
sparc 8 16 32 32 |64 32 |64 128 32 |[signed Big 64
m68kP 8 16 32 32 |64 32 |64 96 32 |signed Big 64
powerpc 8 16 32 32 |64 32 |64 128 32 |unsigned |Big 64
c-167 8 16 16 32 |32 32 |64 64 16 |signed Little 64
tms320c3x 32 |32 32 32 |64 32 |32 64 32 |[signed Little 32
sharc21x6l |32 |32 32 32 |64 32 |32[64] |32[64] |32 [signed Little 32
necv850 8 16 32 32 |32 32 |32 64 32 |[signed Little 32
[16, 8]
hco8¢ 8 16 16 32 |32 32 |321[64] |32 [64] 16¢ |unsigned |Big 32
[32] [16]
hcl2 8 16 16 32 |32 32 [32[64] [32[64] |32% |signed Big 32
[32] [16]
mpc5xx 8 16 32 32 |64 32 |32[64] |32[64] |32 |signed Big 32
[16]
cl8 8 16 16 32 (32 32 |32 32 16 |signed Little 8
[24] [24]
x86 64 8 16 32 64 (64 32 |64 128 64 |[signed Little 64
[32] [32]
mcpu. . . 8 8[16] |16 32 |32 32 |32 [64] |32 [64] 16 |signed Little 32
(Advanced)9 |[[16] [32] [64] [32] [16, 8]
Targets for See ARM v5 Compiler (-compiler armcc).
ARM® v5
compiler
Targets for See ARM v6 Compiler (-compiler armclang).
ARM v6
compiler

Targets for
NPX
CodeWarrior®
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Cosmic
compiler

See Cosmic Compiler (-compiler cosmic).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills®
compiler

See Green Hills Compiler (-compiler greenhills).

2-10

Target processor type (-target)

Target cha [short [int (lon |long (floa |double (long ptr |Default |endian |Align

r g long |t double? sign of ment
char

Targets for IAR |See IAR Embedded Workbench Compiler (-compiler iar-ew).
Embedded
Workbench
compiler

Targets for See MPLAB XC8 C Compiler (-compiler microchip)
MPLAB XC8 C
compiler

Targets for See Renesas Compiler (-compiler renesas).
Renesas®
compiler

Targets for See TASKING Compiler (-compiler tasking).
TASKING
compiler

Targets for See Texas Instruments Compiler (-compiler ti).
Texas
Instruments™
compiler

a

o o

Q 0o Q.

For targets where the size of Long double is greater than 64 bits, the size used for computations is not always the same as the size
listed in this table. The exceptions are:

» For targets 1386, x86 64 and m68k, 80 bits are used for computations, following the practice in common compilers.
* For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.

« Ifyou use a Visual compiler, the size of Llong double used for computations is the same as size of double, following the
specification of Visual C++® compilers.

The M68k family (68000, 68020, and so on) includes the “ColdFire” processor

Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken into account

by this support

All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.

The c18 target supports the type short long as 24 bits in size.

Use option -long-is-32bits to support Microsoft® C/C++ Win64 target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more generic targets. For

more information, see Generic target options.

Tips

» If your processor is not listed, use a similar processor that shares the same characteristics, or
create an mcpu generic target processor. See Generic target options.

* You can also create a custom target by explicitly stating sizes of fundamental types and so on with
the option -custom-target.

* Ifyour configuration uses both -custom-target and -target to specify targets, the analysis
uses the target that you specify with - custom-target.

Command-Line Information

Parameter: -target

Value: 1386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x6l | necv850
| hce8 | hcl2 | mpc5xx | c18 | x86_64 | mcpu

Default: 1386

2-11

2 Analysis Options

2-12

Example (Bug Finder): polyspace-bug-finder -target m68k

Example (Code Prover): polyspace-code-prover -target m68k

Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line options. See the
section Command-Line Options in Generic target options.

See Also

Polyspace Analysis Options
-custom-target

Polyspace Results
Lower Estimate of Size of Local Variables |Higher Estimate of Size of Local
Variables

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Generic target options

Generic target options

Specify size of data types and endianness by creating your own target processor

Description

If a target processor is not directly supported by Polyspace, you can create your own target. You
specify the target mcpu representing a generic "Micro Controller/Processor Unit" and then explicitly
specify sizes of fundamental data types, endianness and other characteristics.

Settings

In the user interface of the Polyspace desktop products, the Generic target options dialog box
opens when you set the Target processor type to mcpu. The Target processor type option is
available on the Target & Compiler node in the Configuration pane.

" Generic target options x
Enter target name My_target]
Endianness Litte endian o

8bits 16bits 3Zbits G4bits
Char ®) Signed
Short))
Int (O]

Long

Long long

Float
Double Long double
Pointer

Alignment)

@O®®®®O0

O®

Save Cancel

Use the dialog box to specify the name of a new mcpu target, for example My target. That new
target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

e char [8]
e short [16]
 int [16]

2-13

2 Analysis Options

* long [32]

* longlong [32]

e float [32]

* double [32]

* long double [32]

* pointer [16]

» alignment [32]

* charis signed

* endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is setto mcpu.

A custom target is not available when Compiler (-compiler) is setto one of the visual* options.

Command-Line Options

When using the command line, use -target mcpu along with these target specification options.

Option Description Available Example
With
-little-endian Little-endian mcpu polyspace-code-prover -lang c
architectures are Less -target mcpu -little-endian

Significant byte First
(LSF). For example:
i386.

Specifies that the less
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0xFF)
and the most
significant byte (0x00)
at the second byte.

2-14

Generic target options

Option

Description

Available
With

Example

-big-endian

Big-endian
architectures are Most
Significant byte First
(MSF). For example:
SPARC, m68k.

Specifies that the most
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0x00)
and the less significant
byte (0xFF) at the
second byte.

mcpu

polyspace-code-prover
mcpu -big-endian

-target

-default-sign-of-char
[signed | unsigned]

Specify default sign of
char.

signed: Specifies that
char is signed,
overriding target’s
default.

unsigned: Specifies
that char is unsigned,
overriding target’s
default.

All targets

polyspace-code-prover

default-sign-of-char unsigned

-target mcpu

-char-is-16bits char defined as 16 bits |[mcpu polyspace-code-prover -target
and all objects have a mcpu -char-is-16bits
minimum alignment of
16 bits
Incompatible with -
short-is-8bits and
-align 8
-short-is-8bits Define short as 8 bits, |mcpu polyspace-code-prover -target
regardless of sign mcpu -short-is-8bits
-int-is-32bits Define int as 32 bits, |mcpu, hc08, |polyspace-code-prover -target
regardless of sign. hcl2, mpc5xx [mcpu -int-is-32bits
Alignment is also set to
32 bits.
-long-is-32bits Define long as 32 bits, |All targets polyspace-code-prover -target

regardless of sign.
Alignment is also set to
32 bits.

If your project sets int
to 64 bits, you cannot
use this option.

mcpu -long-is-32bits

2-15

2 Analysis Options

alignment of struct or
array objects to the 64,
32, 16, or 8 bit
boundaries.

Consequently, the array
or struct storage is
strictly determined by
the size of the
individual data objects
without member and
end padding.

Option Description Available Example
With
-long-long-is-64bits Define long longas |mcpu polyspace-code-prover -target
64 bits, regardless of mcpu -long-long-is-64bits
sign. Alignment is also
set to 64 bits.
-double-is-64bits Define double and mcpu, polyspace-code-prover -target
long double as 64 sharc21x61, |mcpu -double-is-64bits
bits, regardless of sign. [hc08, hc12,
mpc5xx
-pointer-is-24bits Define pointer as 24 cl8 polyspace-code-prover -target
bits, regardless of sign. cl8-pointer-is-24bits
-pointer-is-32bits Define pointer as 32 mcpu polyspace-code-prover -target
bits, regardless of sign. mcpu -pointer-is-32bits
-align [64|32|16|8] Specifies the largest All targets polyspace-code-prover -target

mcpu -align 16

See also:

* Management of wchar t (-wchar-t-type-is)
* Management of size t (-size-t-type-is)

* Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard typedef-s such
as size t,wchar tand ptrdiff t.

Examples

GCC Toolchains

If you use any of these GCC toolchains for your software development, you can setup your Polyspace
analysis so that your code will compile with Polyspace:

e ARM Ltd's GNU Arm Embedded Toolchain
* HighTec EDV-Systeme
+ Linaro® GNU cross-toolchain

* Melexis®

2-16

Generic target options

MENTOR® Embedded Sourcery CodeBench
QNX® Software Development Platform

Rowley Associates' CrossWorks
STMicroelectronics® TrueSTUDIO® for STM32
Texas Instruments Code Composer Studio™
Wind River® GNU Compiler

Use polyspace-configure on a build command that uses one of these toolchains and extract
information about your compiler configuration. The command creates a Polyspace project by default.
To generate an options file that you then pass to Polyspace at the command line, run polyspace-
configure with the option -output-options-file.

Alternatively, if you prefer to set the details of your compiler configuration manually:

Select the gnu#. x compiler that corresponds to your compiler version for Compiler (-
compiler).

Specify your target by using the “Command-Line Options” on page 2-14. For an example of targets
you can specify, see “Targets for GCC Based Compilers” on page 2-17.

Specify your compiler macro definitions with Preprocessor definitions (-D).

Targets for GCC Based Compilers

If you select one of the gnu#. x compilers for Compiler (-compiler), you can specify one of the
supported target processor types. See Target processor type (-target). If a target processor
type is not directly listed as supported, you can create the target by using this option.

For instance, you can create these targets:

Tricore: Use these options:

-target mcpu

-int-is-32bits

-long-long-is-64bits

-double-is-64bits

-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

PowerPC: Use these options:

-target mcpu

-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

ARM: Use these options:

-target mcpu

-int-is-32bits

-long-long-is-64bits

-double-is-64bits

-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

2-17

2 Analysis Options

2-18

» MSP430: Use these options:

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

Emulate Microchip MPLAB XC16 and XC32 Compilers
If you build your source code using Microchip MPLAB XC16 or XC32 compilers, you can set up your

Polyspace analysis so that your code will compile with Polyspace. Enter these options at the command
line or specify them in the Configuration pane of the Polyspace desktop user interface.

Compile |Target Options
r Processor
Families

MPLAB |PIC24 -compiler gnu4.6

XC16 -D__XC__

dsPIC -D__XC1l6

-target=mcpu

-wchar-t-type-is unsigned-int
-align 16
-long-long-is-64bits

MPLAB |PIC32 -compiler gnu4.8

XC32 -custom-target true,8,2,4,-1,4,8,4,4,8,4,8,1,
big,unsigned long,long,int

-D__PIC32M

-D__ PIC32MX

-D_ PIC32MX

-D_ XC32

-D XC32

-D_XC

-D_XC

-D mips=32

-D__mips__

-D _mips

The set of macros specified with the option Preprocessor definitions (-D) is a minimal set.
Specify additional macros as needed to ensure your code compiles with Polyspace.

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Target processor type (-target)

Topics
“Specity Polyspace Analysis Options”
“Specity Target Environment and Compiler Behavior”

Compiler (-compiler)

Compiler (-compiler)

Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded applications. See the
list below. For these compilers, you can run analysis simply by specifying your compiler and target
processor. For other compilers, specify generic as compiler name. If you face compilation errors,
explicitly define compiler-specific extensions to work around the errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -compiler. See “Command-Line Information” on
page 2-26.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++ Standard, but comes
from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and bit. If you do
not specify your compiler, these additional keywords can cause compilation errors during Polyspace
analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

* You cannot specify compiler flags directly in the Polyspace analysis. To emulate your compiler
flags, trace your build command or manually specify equivalent Polyspace analysis options. See
“Specify Target Environment and Compiler Behavior”.

* Code Prover has a linking policy that is stricter than regular compilers. For instance, if your
compiler allows declaration mismatches with specific compiler options, you cannot emulate this
linking policy in Code Prover. See “Troubleshoot Compilation and Linking Errors”.

Settings

Default: generic

GCC Compilers

ghu3.4

Analysis allows GCC 3.4 syntax.
gnu4.6

Analysis allows GCC 4.6 syntax.

2-19

2 Analysis Options

2-20

gnu4.7
Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-25.
gnu4.8
Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-25.
gnu4.9
Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-25.
gnu5.x
Analysis allows GCC 5.x syntax. For a list of available GCC 5.x releases, see GCC releases.

If you select gnu5. x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-25.

gnuo. X
Analysis allows GCC 6.x syntax. For a list of available GCC 6.x releases, see GCC releases.
If you select gnu6. x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.
For unsupported GCC extensions, see “Limitations” on page 2-25.

gnu7.x
Analysis allows GCC 7.x syntax. For a list of available GCC 7.x releases, see GCC releases.
If you select gnu7.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.
For unsupported GCC extensions, see “Limitations” on page 2-25.

gnu8.x
Analysis allows GCC 8.x syntax. For a list of available GCC 8.x releases, see GCC releases.
If you select gnu8. x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.
For unsupported GCC extensions, see “Limitations” on page 2-25.

gnu9.x
Analysis allows GCC 9.x syntax. For a list of available GCC 9.x releases, see GCC releases.
If you select gnu9. x, the option Target processor type (-target) shows only a subset of

targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

Compiler (-compiler)

For unsupported GCC extensions, see “Limitations” on page 2-25.
gnul@.x
Analysis allows GCC 10.x syntax. For a list of available GCC 10.x releases, see GCC releases.
If you select gnul0.x, the option Target processor type (-target) shows only a subset of

targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-25.
Clang Compilers

clang3.x
Analysis allows Clang syntax for these versions:

+ 3.5.0,3.5.1,and 3.5.2
+ 3.6.0,3.6.1, and 3.6.2
« 3.7.0and 3.7.1
+ 3.8.0and 3.8.1
* 3.9.0and 3.9.1

clang4.x

Analysis allows Clang 4.0.0, and 4.0.1 syntax.
clang5.x

Analysis allows Clang 5.0.0, 5.0.1, and 5.0.2 syntax.
clang6.x

Analysis allows Clang 6.0.0 and 6.0.1 syntax.
clang7.x

Analysis allows Clang 7.0.0, 7.0.1, and 7.1.0 syntax.
clang8.x

Analysis allows Clang 8.0.0 and 8.0.1 syntax.
clang9.x

Analysis allows Clang 9.0.0 and 9.0.1 syntax.
clangl0.x

Analysis allows Clang 10.0.0 and 10.0.1 syntax.
clangll.x

Analysis allows Clang 11.0.0, 11.0.1, and 11.1.0 syntax.
clangl2.x

Analysis allows Clang 12.0.0 and 12.0.1 syntax.

Visual Studio Compilers

visual9.0
Analysis allows Microsoft Visual C++ 2008 syntax.

2-21

https://gcc.gnu.org/releases.html

2 Analysis Options

2-22

visuall0.0
Analysis allows Microsoft Visual C++ 2010 syntax.
visualll.o
Analysis allows Microsoft Visual C++ 2012 syntax.
visuall2.0
Analysis allows Microsoft Visual C++ 2013 syntax.
visuall4.o
Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual Studio® update 2).
visuall5.x

Analysis allows Microsoft Visual C++ 2017 syntax. For a list of available Microsoft Visual Studio
2017 versions, see Visual Studio 2017 Release Notes History.

visuall6.x
Analysis allows Microsoft Visual C++ 2019 syntax. For a list of available Microsoft Visual Studio
2019 versions, see Visual Studio 2019 Release Notes History.

Other Compilers

armcc
Analysis allows non-ANSI® C syntax and semantics associated with the ARM v5 compiler.
If you select armcc, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the ARM v5 compiler.
See ARM v5 Compiler (-compiler armcc).

armclang
Analysis allows non-ANSI C syntax and semantics associated with the ARM v6 compiler.
If you select armclang, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the ARM v6
compiler.
See ARM v6 Compiler (-compiler armclang).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP CodeWarrior compiler.
If you select codewarrior, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the NXP
CodeWarrior compiler.
See NXP CodeWarrior Compiler (-compiler codewarrior).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the Cosmic compiler.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Comic compiler.

See Cosmic Compiler (-compiler cosmic).

https://docs.microsoft.com/visualstudio/releasenotes/vs2017-relnotes-history
https://docs.microsoft.com/visualstudio/releases/2019/history

Compiler (-compiler)

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Wind River Diab

compiler.
See Diab Compiler (-compiler diab).
generic

Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

+ C standard version (-c-version)
* C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of compiler.
greenhills

Analysis allows non-ANSI C syntax and semantics associated with a Green Hills compiler.

If you select greenhills, in the user interface of the Polyspace desktop products, the option

Target processor type (-target) shows only the targets that are allowed for a Green Hills
compiler.

See Green Hills Compiler (-compiler greenhills).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from IAR
Systems (www.iar.com).

iar-ew

Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded Workbench
compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the option Target

processor type (-target) shows only the targets that are allowed for the IAR Embedded
Workbench compiler.

See IAR Embedded Workbench Compiler (-compiler iar-ew).

intel
Analysis allows non-ANSI C syntax and semantics associated with the Intel® C++ Compiler
Classic (icc/icl) compiler.

If you select intel, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Intel C++
Compiler Classic (icc/icl) compiler.

See Intel C++ Compiler Classic (icc/icl) (-compiler intel).
keil

Analysis allows non-ANSI C syntax and semantics associated with the Keil products from ARM
(www.keil.com).

2-23

https://www.iar.com/
https://www.keil.com/

2 Analysis Options

2-24

microchip

Analysis allows non-ANSI C syntax and semantics associated with the MPLAB XC8 C compiler.
If you select microchip, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the MPLAB
XC8 C compiler.

See MPLAB XC8 C Compiler (-compiler microchip).

renesas

Analysis allows non-ANSI C syntax and semantics associated with the Renesas compiler.

If you select renesas, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Renesas compiler.

See Renesas Compiler (-compiler renesas).

tasking

ti

Analysis allows non-ANSI C syntax and semantics associated with the TASKING compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the TASKING
compiler.

See TASKING Compiler (-compiler tasking).

Analysis allows non-ANSI C syntax and semantics associated with the Texas Instruments compiler.
If you select ti, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Texas Instruments
compiler.

See Texas Instruments Compiler (-compiler ti).

Tips

Your compiler specification determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

If you use a Visual Studio compiler, you must use a Target processor type (-target)
option that sets Long long to 64 bits. Compatible targets include: 1386, sparc, m68k, powerpc,
tms320c3x, sharc21x61, mpc5xx, x86 64, or mcpu with Long long set to 64 (-long-long-
is-64bits at the command line).

If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules that require
conforming to the ISO standard. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Compiler (-compiler)

Limitations

GNU Compilers

Polyspace does not support certain features of GNU compilers:

* GNU® compilers versions 4.7 and later:

Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)

{

int bar (int c) { return c * c; }

return bar (a) + bar (b);

}

Binary operations with vector types where one operand uses the shorthand notation for
uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for {2,2,2,2}.

typedef int v4si attribute ((vector_size (16)));
vdsi res, a = {1,2,3,4};
res =2 + a; /* means {2,2,2,2} + a */

Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len]l[len], int 1len)

{
/* . */
}

Complex integer data types.

However, complex floating point data types are supported.
Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S is directly
initialized with an initialization list.

struct S {

int x;

int tab[]; /* flexible array member - not supported */
}

struct Ss={0, 1, 2} ;

You see a warning during analysis and a red check in the results when you dereference, for
instance, s.tab[1].

128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-bit data
types, but Code Prover shows a compilation error if you use such a data type, for instance, the
GCC extension __ float128.

2-25

2 Analysis Options

2-26

* GNU compilers version 7.x:

* Type names FloatNand FloatNx are not semantically supported. The analysis treats them
as type float, double, or Llong double.

* Constants of type FloatNor FloatNx with suffixes fN, FN, or fNx, such as 1.2f123 or
2.3F64x are not supported.

Visual Studio Compilers
Polyspace does not support certain features of Visual Studio compilers:
e C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for certain types of
data-parallel hardware on specific targets. You typically use the restrict keyword to enable this
feature.

void Buffer() restrict(amp)

{

}
* _ assume statements.

You typically use assume with a condition that is false. The statement indicates that the
optimizer must assume the condition to be henceforth true. Code Prover cannot reconcile this
contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

* Managed Extensions for C++ (required for the .NET Framework), or its successor, C++/CLI (C++
modified for Common Language Infrastructure)

* declspec keyword with attributes other than noreturn, nothrow, selectany or thread.
Polyspace System Headers

If you do not specify the path to your compiler headers, Polyspace uses its own system headers and
your project might not compile even if your code compiles with your compiler.

To make sure that Polyspace uses your compiler header files, run polyspace-configure or specify
the paths to your compiler header files manually. See “Provide Standard Library Headers for
Polyspace Analysis”.

Command-Line Information

Parameter: -compiler

Value: armcc | armclang | clang3.x | clang4.x | clang5.x | clang6.x | clang7.x
| clang8.x | clang9.x | clangle.x | clangll.x | clangl2.x | codewarrior |
cosmic | diab | generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x
| gnu6.x | gnu7.x | gnu8.x | gnu9.x | gnul0.x | greenhills | iar | iar-ew |
intel | keil | microchip | renesas | tasking | ti | visuall0.0 | visualll.O |
visuall2.0 | visuall4.0 | visuall5.x | visuall6e.x | visual9.0

Default: generic

Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources "filel.c,file2.c"
-compiler gnu4.6

Compiler (-compiler)

Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources

"filel.cpp, file2.cpp" -compiler visual9.0

Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"filel.c,file2.c" -lang c -compiler gnu4.6

Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"filel.cpp, file2.cpp" -compiler visual9.0

Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"filel.c,file2.c" -compiler gnu4.6

Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
"filel.cpp, file2.cpp" -compiler visual9.0

Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -sources
"filel.c,file2.c" -lang c -compiler gnu4.6

Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"filel.cpp, file2.cpp" -compiler visual9.0

See Also

Target processor type (-target) |C standard version (-c-version) | C++ standard
version (-cpp-version)

Topics

“Specify Polyspace Analysis Options”

“Troubleshoot Compilation Errors”

“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2-27

2 Analysis Options

2-28

ARM v5 Compiler (-compiler armcc)

Specify ARM v5 compiler

Description

Specify armcc for the Compiler (-compiler) option if you compile your code with a ARM v5
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a ARM v5 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

Parameter: -compiler armcc -target

Value: arm

Default: arm

Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm

Example (Code Prover): polyspace-code-prover -compiler armcc -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc -target
arm

Example (Code Prover Server): polyspace-code-prover-server -compiler armcc -
target arm

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Version History
Introduced in R2019a

ARM v5 Compiler (-compiler armcc)

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-29

2 Analysis Options

2-30

ARM v6 Compiler (-compiler armclang)

Specify ARM v6 compiler

Description

Specify armclang for the Compiler (-compiler) option if you compile your code with a ARM v6
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the user interface
of the Polyspace desktop products, you see only the processors allowed for a ARM v6 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

Parameter: -compiler armclang -target

Value: arm | arm64

Default: arm

Example (Bug Finder): polyspace-bug-finder -compiler armclang -target arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armclang -
target arme4

Example (Code Prover Server): polyspace-code-prover-server -compiler armclang -
target arme4

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Version History
Introduced in R2019a

ARM v6 Compiler (-compiler armclang)

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-31

2 Analysis Options

2-32

NXP CodeWarrior Compiler (-compiler
codewarrior)

Specify NXP CodeWarrior compiler

Description

Specify codewarrior for Compiler (-compiler) if you compile your code using a NXP
CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a NXP
CodeWarrior compiler. Your choice of target processor determines the size of fundamental data types,
the endianness of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
» To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

Parameter: -compiler codewarrior -target

Value: s12z | powerpc

Default: s12z

Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -target
powerpc

Example (Bug Finder Server): polyspace-bug-finder-server -compiler codewarrior -
target powerpc

Example (Code Prover Server): polyspace-code-prover-server -compiler codewarrior
-target powerpc

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

NXP CodeWarrior Compiler (-compiler codewarrior)

Version History
Introduced in R2018a

See Also
Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-33

2 Analysis Options

2-34

Cosmic Compiler (-compiler cosmic)

Specify Cosmic compiler

Description

Specify cosmic for the Compiler (-compiler) option if you compile your code with a Cosmic
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select cosmic for Compiler, in the user interface,
you see only the processors allowed for a Cosmic compiler. Your choice of target processor
determines the size of fundamental data types, the endianness of the target machine, and certain
keyword definitions.

If you specify the cosmic compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

Parameter: -compiler cosmic -target

Value: s12z

Default: s12z

Example (Bug Finder): polyspace-bug-finder -compiler cosmic -target sl2z
Example (Code Prover): polyspace-code-prover -compiler cosmic -target sl2z
Example (Bug Finder Server): polyspace-bug-finder-server -compiler cosmic -target
sl2z

Example (Code Prover Server): polyspace-code-prover-server -compiler cosmic -
target sl2z

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Version History
Introduced in R2019b

Cosmic Compiler (-compiler cosmic)

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-35

2 Analysis Options

2-36

Diab Compiler (-compiler diab)

Specify the Wind River Diab compiler

Description

Specify diab for Compiler (-compiler) if you compile your code using the Wind River Diab
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for the Diab compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the target machine
and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
» To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
* Polyspace does not support these Diab compiler features:

* The preprocessor directives #assert and #unassert. Your code compiles but the software
does not interpret these directives semantically.

+ Single-character constants in #1if directives having the same value as the same character
constant in the execution character set. Your code compiles but Polyspace does not consider
that the character constants have the same value.

* The extended sizeof () syntax using two arguments. For example, sizeof(char, 2). Your
code does not compile with Polyspace when you use this feature.

* Statement expressions. For example, ({int y; y=foo(); y;}). Your code does not compile
with Polyspace when you use this feature.

* The use of regular expressions with the defined preprocessor operator. For example #1if
defined ("BSP_HW*"). Your code does not compile with Polyspace when you use this
feature.

» If you encounter errors during Polyspace analysis, see “Fix Polyspace Compilation Errors Related
to Diab Compiler”.

Diab Compiler (-compiler diab)

» If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information

Parameter: -compiler diab -target

Value: 1386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh |
tricore

Default: powerpc

Example (Bug Finder): polyspace-bug-finder -compiler diab -target tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab -target
tricore

Example (Code Prover Server): polyspace-code-prover-server -compiler diab -target
tricore

Version History
Introduced in R2016b

See Also
Compiler (-compiler) |Target processor type (-target)
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-37

2 Analysis Options

2-38

Green Hills Compiler (-compiler greenhills)

Specify Green Hills compiler

Description

Specify greenhills for Compiler (-compiler) if you compile your code using a Green Hills
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a Green Hills
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
» To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips

» Ifyou encounter errors during a Polyspace analysis, see “Fix Polyspace Compilation Errors
Related to Green Hills Compiler”

* Polyspace supports the embedded configuration for the i386 target. If your x86 Green Hills
compiler is configured for native Windows® development, you can see compilation errors or
incorrect analysis results with Code Prover. Contact Technical Support.

For instance, Green Hills compilers consider a size of 12 bytes for Long double for embedded
targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by default.

+ Ifyou create a Polyspace project from a build command that uses a Green Hills compiler, the
compiler options - filetype and -0s_dir are not implemented in the project. To emulate the -
0s_dir option, you can explicitly add the path argument of the option as an include folder to your
Polyspace project.

» If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Green Hills Compiler (-compiler greenhills)

Command-Line Information

Parameter: -compiler greenhills -target

Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm | i386 |
x86 64

Default: powerpc

Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler greenhills -
target arm

Example (Code Prover Server): polyspace-code-prover-server -compiler greenhills -
target arm

Version History
Introduced in R2017b

See Also
Compiler (-compiler) |Target processor type (-target)
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-39

2 Analysis Options

2-40

IAR Embedded Workbench Compiler (-compiler
iar-ew)

Specify IAR Embedded Workbench compiler

Description

Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR Embedded
Workbench compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a IAR Embedded Workbench
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips

* Polyspace does not support the use of $Super$$ and $Sub$$ to patch symbol definitions. For
instance, the following code compiles correctly, but Polyspace considers that main() calls the
extern func ($Super$$func) instead of the function func defined in this code (Sub
$func):

/* void func() declared in another file */
extern void $Super$$func(int 1i);

int setup = 0;

void setup func(int i) {
setup = 1i;

}

/* this function should be called instead of the original extern func() */
void $Sub$$func(int i) {

setup foo(i);

/* does some extra setup work */

/* o0 */
}

int main() {
assert(setup = 0);

IAR Embedded Workbench Compiler (-compiler iar-ew)

func(1l); // Should call $Sub$$func instead of $Super$$func

assert(setup = 1);

return 0;
}
To make sure that Polyspace calls the correct function when analyzing your code, replace all
instance of $Sub$$ with an empty string in all your files after preprocessing. See Command/

script to apply to preprocessed files (-post-preprocessing-command).
* Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover limitations.pdf in polyspaceroot
\polyspace\verifier\code prover desktop. Here, polyspaceroot is the MATLAB®
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

» Ifyou use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information

Parameter: -compiler iar-ew -target

Value: arm | avr | msp430 | rh850 | riscv | rl78

Default: arm

Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target rl78
Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-ew -target
ri78

Example (Code Prover Server): polyspace-code-prover-server -compiler iar-ew -
target rl78

Version History
Introduced in R2018a

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-41

2 Analysis Options

2-42

Intel C++ Compiler Classic (icc/icl) (-compiler
intel)

Specify Intel C++ Compiler Classic (icc/icl)

Description

Specify intel for the Compiler (-compiler) option if you compile your code with an Intel C++
Compiler Classic (icc/icl) compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select intel for Compiler, in the user interface, you
see only the processors allowed for a Intel C++ Compiler Classic (icc/icl) compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the target
machine, and certain keyword definitions.

If you specify the intel compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Command-Line Information

Parameter: -compiler intel -target

Value: x86 64

Default: x86 64

Example (Bug Finder): polyspace-bug-finder -compiler intel -target x86 64
Example (Code Prover): polyspace-code-prover -compiler intel -target x86 64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler intel -target
x86 64

Example (Code Prover Server): polyspace-code-prover-server -compiler intel -
target x86 64

Version History
Introduced in R2022b

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

MPLAB XC8 C Compiler (-compiler microchip)

MPLAB XC8 C Compiler (-compiler microchip)

Specify MPLAB XC8 C compiler

Description

Specify microchip for the Compiler (-compiler) option if you compile your code with a MPLAB
XC8 C compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not
part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select microchip for Compiler, in the user
interface, you see only the processors allowed for a MPLAB XC8 C compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target machine, and
certain keyword definitions.

If you specify the microchip compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tip

* Polyspace does not support the Atmel families of processors, such as AVR, TinyAVR, MegaAVR,
XMEGA, and SAM32.

* Polyspace does not support the CPP/P1 or C18 Microchip front-end. This front-end is activated by
the compiler when you compile your code with the C90 version of the Standard.

» If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information

Parameter: -compiler microchip -target

Value: pic

Default: pic

Example (Bug Finder): polyspace-bug-finder -compiler microchip -target pic
Example (Code Prover): polyspace-code-prover -compiler microchip -target pic
Example (Bug Finder Server): polyspace-bug-finder-server -compiler microchip -
target pic

2-43

2 Analysis Options

Example (Code Prover Server): polyspace-code-prover-server -compiler microchip -
target pic

Version History
Introduced in R2020a

See Also
Compiler (-compiler) |Target processor type (-target)
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-44

Renesas Compiler (-compiler renesas)

Renesas Compiler (-compiler renesas)

Specify Renesas compiler

Description

Specify renesas for the Compiler (-compiler) option if you compile your code with a Renesas
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a Renesas compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
* To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

Parameter: -compiler renesas -target

Value: r178 | rh850 | rx | sh

Default: r178

Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler renesas -
target rx

Example (Code Prover Server): polyspace-code-prover-server -compiler renesas -
target rx

Tips

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Version History
Introduced in R2018b

2-45

2 Analysis Options

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-46

TASKING Compiler (-compiler tasking)

TASKING Compiler (-compiler tasking)

Specify the Altium TASKING compiler

Description

Specify tasking for Compiler (-compiler) if you compile your code using the Altium® TASKING
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for the TASKING compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the target:

» TriCore: 6.x and older versions
* (C166: 4.x and older versions
* ARM: 5.x and older versions
* RH850: 2.x and older versions

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override the macro definition, use the option Preprocessor definitions (-D).
» To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
* Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover limitations.pdf in polyspaceroot
\polyspace\verifier\code prover desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

* The CPU used is TC1793. If you use a different CPU, set the following analysis options in your
project:

+ Disabled preprocessor definitions (-U): Undefine the macro CPU TC1793B .

2-47

2 Analysis Options

2-48

* Preprocessor definitions (-D): Define the macro CPU_ . Enter CPU_ =xxx,
where xxx is the name of your CPU.

Additionally, define the equivalent of the macro CPU _TC1793B__ for your CPU. For instance,
enter CPU TC1793A .

Instead of manually specifying your compiler, if you trace your build command (makefile),
Polyspace can detect your CPU and add the required definitions in your project.

» For some errors related to TASKING compiler-specific constructs, see solutions in “Fix Polyspace
Compilation Errors Related to TASKING Compiler”.

» Ifyou use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information

Parameter: -compiler tasking -target

Value: tricore | c166 | rh850 | arm

Default: tricore

Example (Bug Finder): polyspace-bug-finder -compiler tasking -target tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler tasking -
target tricore

Example (Code Prover Server): polyspace-code-prover-server -compiler tasking -
target tricore

Version History
Introduced in R2017a

See Also
Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Texas Instruments Compiler (-compiler ti)

Texas Instruments Compiler (-compiler ti)

Specify Texas Instruments compiler

Description

Specify ti for Compiler (-compiler) if you compile your code using a Texas Instruments
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for a Texas Instruments compiler.
Your choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files. See “Provide
Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

» To override the macro definition, use the option Preprocessor definitions (-D).
» To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover limitations.pdf in polyspaceroot
\polyspace\verifier\code prover desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Command-Line Information

Parameter: -compiler ti -target

Value: c28x | c6000 | arm | msp430

Default: c28x

Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -target
msp430

2-49

2 Analysis Options

Example (Code Prover Server): polyspace-code-prover-server -compiler ti -target
msp430

Version History
Introduced in R2018a

See Also
Compiler (-compiler) |Target processor type (-target)

Topics

“Specify Polyspace Analysis Options”

“Specify Target Environment and Compiler Behavior”

“Fix Polyspace Compilation Errors Related to Texas Instruments Compilers”

2-50

Sfr type support (-sfr-types)

Sfr type support (-sfr-types)

Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependency” on page 2-51 for other options you must also enable.

Command line and options file: Use the option -sfr-types. See “Command-Line Information” on
page 2-51.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr types are not
standard C types. Therefore, you must specify their sizes explicitly for the Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency

This option is available only when Compiler (-compiler) issetto keil or iar.

Command-Line Information

Syntax: -sfr-types sfr _name=size in bits, ...

No Default

Name Value: an sfr name such as sfrl6.

Size Value: 8 | 16 | 32

Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-types
sfr=8,sfrl6e=16 ...

Example (Code Prover): polyspace-code-prover -lang c -compiler iar -sfr-types
sfr=8,sfrl6e=16 ...

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -compiler iar -
sfr-types sfr=8,sfrl6=16 ...

Example (Code Prover Server): polyspace-code-prover-server -lang c -compiler iar
-sfr-types sfr=8,sfrl6=16 ...

See Also

Topics
“Specify Polyspace Analysis Options”

2-51

2 Analysis Options

“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2-52

Division round down (-div-round-down)

Division round down (-div-round-down)

Round down quotients from division or modulus of negative numbers instead of rounding up

Description

Specify whether quotients from division and modulus of negative numbers are rounded up or down.

Note a = (a / b) * b + a % bisalways true.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -div-round-down. See “Command-Line
Information” on page 2-54.

Why Use This Option
Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990). The standard
stipulates that "if either operand of / or % is negative, whether the result of the / operator, is the
largest integer less or equal than the algebraic quotient or the smallest integer greater or equal than
the quotient, is implementation defined, same for the sign of the % operator". The standard allows
compilers to choose their own implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not required. The
standard enforces division with rounding towards zero (section 6.5.5).

Settings

41 0n
If either operand / or % is negative, the result of the / operator is the largest integer less than or
equal to the algebraic quotient. The result of the % operator is deduced froma % b = a - (a /
b) * b.
Example: assert(-5/3 == -2 && -5%3 == 1); istrue.
Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest integer greater
than or equal to the algebraic quotient. The result of the % operator is deduced froma % b = a
- (a/ b) *b

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); istrue.

2-53

2 Analysis Options

Command-Line Information

Parameter: -div-round-down

Default: Off

Example (Bug Finder): polyspace-bug-finder -div-round-down

Example (Code Prover): polyspace-code-prover -div-round-down

Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-down

See Also
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-54

Enum type definition (-enum-type-definition)

Enum type definition (-enum-type-definition)

Specify how to represent an enum with a base type

Description

Allow the analysis to use different base types to represent an enumerated type, depending on the
enumerator values and the selected definition. When using this option, each enum type is represented
by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -enum-type-definition. See “Command-Line
Information” on page 2-56.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this option so that
you can emulate your compiler.

To check your compiler settings:

1 Compile this code using the compiler settings that you typically use:
enum { MAXSIGNEDBYTE=127 } mysmallenum_t;
int dummy[(int)sizeof(mysmallenum t) - (int)sizeof(int)];

If compilation fails, you have to use one of auto-signed-first or auto-unsigned-first.
2 Compile this code using the compiler settings that you typically use:

#include <limits.h>
enum { MYINTMAX = INT MAX } myintenum t;
int dummy[(MYINTMAX + 1) <0 ? -1:1];
If compilation fails, use auto-signed-first for this option, otherwise use auto-unsigned-
first.
Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

2-55

2 Analysis Options

2-56

For the gnu and clang compilers, it uses the first type that can hold all of the enumerator values
from this list: unsigned int, signed int, unsigned long, signed long, unsigned long
long and signed long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator values from this
list: char, unsigned char, short, unsigned short, int, and unsigned int.

auto-signed-first

Uses the first type that can hold all of the enumerator values from this list: signed char,
unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, unsigned long, signed long long, and unsigned long long

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

* If enumerator values are positive: unsigned char, unsigned short, unsigned int,
unsigned long, and unsigned long long

* If one or more enumerator values are negative: signed char, signed short, signed int,
signed long, and signed long long

Command-Line Information

Parameter: -enum-type-definition

Value: defined-by-compiler | auto-signed-first | auto-unsigned-first

Default: defined-by-compiler

Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-signed-
first

Example (Code Prover): polyspace-code-prover -enum-type-definition auto-signed-
first

Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-definition
auto-signed-first

Example (Code Prover Server): polyspace-code-prover-server -enum-type-definition
auto-signed-first

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Block charl6/32_t types (-no-uliterals)

Block charl6/32_t types (-no-uliterals)

Disable Polyspace definitions for charl6 t or char32 t

Description
Specify that the analysis must not define charl6 t or char32 t types.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-57 for other options you must also enable.

Command line and options file: Use the option -no-uliterals. See “Command-Line
Information” on page 2-57.

Why Use This Option

If your compiler defines charl6 t and/or char32 t through a typedef statement or by using
includes, use this option to turn off the standard Polyspace definition of charl6 t and char32 t.

To check if your compiler defines these types, compile this code using the compiler settings that you
typically use:

typedef unsigned short charl6 t;
typedef unsigned long char32 t;

If the file compiles, it means that your compiler has already defined charl6 t and char32 t.
Enable this Polyspace option.

Settings

41 0n
The analysis does not allow charl6 t and char32 t types.

Off (default)
The analysis allows charl6 t and char32 t types.

Dependencies

You can select this option only when these conditions are true:

* Source code language (-lang) is setto CPP or C-CPP.
* Compiler (-compiler) issettogeneric ora gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off

2-57

2 Analysis Options

Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -cpp-
version cppll -no-uliterals

Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp -cpp-
version cppll -no-uliterals

Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -compiler
gnu4.7 -cpp-version cppll -no-uliterals

Example (Code Prover Server): polyspace-code-prover-server -compiler gnu4.7 -lang
cpp -cpp-version cppll -no-uliterals

See Also
Compiler (-compiler)
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-58

Pack alignment value (-pack-alignment-value)

Pack alignment value (-pack-alignment-value)

Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class members.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -pack-alignment-value. See “Command-Line
Information” on page 2-59.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into memory, use this
option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this option for your
Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify this option
for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

o 1
e 2
e 4
+ 8

+ 16

Command-Line Information

Parameter: -pack-alignment-value

Value:1 | 2 | 4| 8 | 16

Default: 8

Example (Bug Finder): polyspace-bug-finder -compiler visuall@ -pack-alignment-
value 4

Example (Code Prover): polyspace-code-prover -compiler visuall@ -pack-alignment-
value 4

2-59

https://msdn.microsoft.com/library/xh3e3fd0.aspx

2 Analysis Options

Example (Bug Finder Server): polyspace-bug-finder-server -compiler visuall@ -
pack-alignment-value 4

Example (Code Prover Server): polyspace-code-prover-server -compiler visuallO -
pack-alignment-value 4

See Also

Topics

“Specify Polyspace Analysis Options”

“Specify Target Environment and Compiler Behavior”

“Code Prover Assumptions About #pragma Directives” on page 14-29

2-60

Ignore pragma pack directives (-ignore-pragma-pack)

Ignore pragma pack directives (-ignore-pragma-
pack)

Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 2-61.

Why Use This Option
Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one declaration follows a
#pragma pack(2) statement. Because the default alignment is 8 bytes, the different packing for the
two structures causes a linking error. Use this option to avoid such errors.

Settings

41 0n
The analysis ignores the #pragma directives.

Off (default)
The analysis takes into account specifications in the #pragma directives.

Command-Line Information

Parameter: -ignore-pragma-pack

Default: Off

Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack

Example (Code Prover): polyspace-code-prover -ignore-pragma-pack

Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-pragma-pack

See Also

Topics

“Specify Polyspace Analysis Options”

“Specify Target Environment and Compiler Behavior”

“Code Prover Assumptions About #pragma Directives” on page 14-29

2-61

2 Analysis Options

2-62

Management of size t (-size-t-type-1is)

Specify the underlying data type of size t

Description

Specify the underlying data type of size t explicitly: unsigned char, unsigned short,
unsigned int, unsigned long or unsigned long long. If you do not specify this option, your
choice of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -size-t-type-is. See “Command-Line
Information” on page 2-63.

Why Use This Option

The analysis associates a data type with size t when you specify your compiler using the option
Compiler (-compiler).In most cases, you do not have to explicitly use this option and specify an
underlying type for size t.

In some situations, when building your code, you might be using a compiler option that changed the
compiler's default definition of size t. In these cases, emulate your compiler option by using this
Polyspace analysis option. Otherwise, you might see an error message related to size t during
Polyspace analysis. If you see such an error message, to probe further and determine the underlying
type of size t, compile this code with your compiler using the options that you typically use:

/* Header defines malloc as void* malloc (size t size)
#include <stlib.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler (along with compiler options) defines size t using a type
different from unsigned int. Replace unsigned int with another type such as unsigned long
and try again till you determine the underlying type of size t.

Settings
Default: defined-by-compiler

defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of size t.
unsigned-int

The analysis considers unsigned int as the underlying type of size t
unsigned-long

The analysis considers unsigned long as the underlying type of size t.

Management of size_t (-size-t-type-is)

unsigned-long-long

The analysis considers unsigned long long as the underlying type of size t
unsigned-char

The analysis considers unsigned char as the underlying type of size t.
unsigned-short

The analysis considers unsigned short as the underlying type of size t.

Tips

Compilation errors from incorrect definition of size t can appear in unexpected ways. For instance,
you might see an error like this:

first parameter of allocation function must be of type "size t"
on a declaration of an allocation function such as:
void * operator new(size t size);

This error appears because Polyspace internally declares the allocation function with the size t
definition from your Polyspace analysis configuration, but your declaration might be using a different
size t definition from a compiler header. The mismatch in the size t definitions leads to a
mismatch in the declarations of the allocation functions and shows up as an error message about the
allocation functions.

Command-Line Information

Parameter: -size-t-type-is

Value: defined-by-compiler | unsigned-char | unsigned-int | unsigned-short |
unsigned-long | unsigned-long-long

Default: defined-by-compiler

Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long

Example (Code Prover Server): polyspace-code-prover-server -size-t-type-is
unsigned-long

See Also
-custom-target
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-63

2 Analysis Options

2-64

Management of wchar t (-wchar-t-type-is)

Specify the underlying data type of wchar t

Description

Specify the underlying data type of wchar _t explicitly. If you do not specify this option, your choice
of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -wchar-t-type-is. See “Command-Line
Information” on page 2-64.

Why Use This Option

The analysis associates a data type with wchar t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

Settings
Default: defined-by-compiler

defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of wchar t.
signed-short

The analysis considers signed short as the underlying type of wchar_t.
unsigned-short

The analysis considers unsigned short as the underlying type of wchar_t.
signed-int

The analysis considers signed int as the underlying type of wchar t.
unsigned-int

The analysis considers unsigned int as the underlying type of wchar_t.
signed-long

The analysis considers signed long as the underlying type of wchar t.
unsigned-long

The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is

Management of wchar_t (-wchar-t-type-1is)

Value: defined-by-compiler | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Default: defined-by-compiler

Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int

Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-int

Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-is signed-
int

Example (Code Prover Server): polyspace-code-prover-server -wchar-t-type-is
signed-int

See Also
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-65

2 Analysis Options

2-66

Signed right shift (-logical-signed-right-
shift)

Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation” on page 2-
66.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -logical-signed-right-shift. See
“Command-Line Information” on page 2-67.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed and has
negative values, the behavior is implementation-defined. Different compilers choose between
arithmetic and logical shift. Use this option to emulate your compiler.

Settings

Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) > 1= -2

(-7) > 1= -4

7 >1=3
Logical

0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
7 > 1=3
Limitation

In compile-time expressions, this Polyspace option does not change the standard behavior for right
shifts.

For example, consider this right shift expression:

Signed right shift (-logical-signed-right-shift)

int arr[((-4) >> 20) 1;

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at compilation time.
Logically, this expression is equivalent to 4095. However, arithmetically, the result is -1. This
statement causes a compilation error (arrays cannot have negative size) because the standard right-
shift behavior for signed integers is arithmetic.

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this option is set,
logical computation is performed.

Parameter: -logical-signed-right-shift

Default: Arithmetic signed right shifts

Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift

Example (Code Prover): polyspace-code-prover -logical-signed-right-shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-signed-right-
shift

Example (Code Prover Server): polyspace-code-prover-server -logical-signed-right-
shift

See Also
Topics

“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2-67

2 Analysis Options

2-68

Preprocessor definitions (-D)

Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -D. See “Command-Line Information” on page 2-
69.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as defined when you build your code, it executes code in a #1ifdef WIN32 statement. If
Polyspace does not consider that macro as defined, you must use this option to replace the macro
with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by default. Use
this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For instance, the
following code does not compile if the macro WIN32 is not defined.

#ifdef WIN32
int env_var;

#endif

void set() {
env_var=l;

}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifdef WIN32 statement. The underlying cause for the error is that the macro WIN32 is not
defined. You must define WIN32.

Settings

No Default

Using the e button, add a row for the macro you want to define. The definition must be in the
format Macro=Value. If you want Polyspace to ignore the macro, leave the Value blank.

For example:

Preprocessor definitions (-D)

* namel=name2 replaces all instances of namel by name2.
* name= instructs the software to ignore name.

* name with no equals sign or value replaces all instances of name by 1. To define a macro to
execute code in a #ifdef macro name statement, use this syntax.

Tips

» If Polyspace does not support a non-ANSI keyword and shows a compilation error, use this option
to replace all occurrences of the keyword with a blank string in preprocessed code. The
replacement occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, if your compiler supports the far keyword, to avoid compilation errors:

* In the user interface (desktop products only), enter far=.
* On the command line, use the flag -D _ far=.

The software replaces the far keyword with a blank string during preprocessing. For example:
int _ far* pValue;
is converted to:

int * pValue;

* Polyspace recognizes keywords such as restrict and does not allow their use as identifiers. If
you use those keywords as identifiers (because your compiler does not recognize them as
keywords), replace the disallowed name with another name using this option. The replacement
occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, to allow use of restrict as identifier:

* In the user interface, enter restrict=my restrict.
* On the command line, use the flag -D restrict=my restrict.

* Your compiler specification determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

+ To override the macro definition coming from a compiler specification, use this option.
+ To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option multiple times.
Parameter: -D

No Default

Value: flag=value

Example (Bug Finder): polyspace-bug-finder -D HAVE MYLIB -D int32 t=int

Example (Code Prover): polyspace-code-prover -D HAVE MYLIB -D int32 t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE MYLIB -D

int32_ t=int

Example (Code Prover Server): polyspace-code-prover-server -D HAVE MYLIB -D

int32_ t=int

2-69

2 Analysis Options

See Also
Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

2-70

Disabled preprocessor definitions (-U)

Disabled preprocessor definitions (-U)

Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -U. See “Command-Line Information” on page 2-
72.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, your compiler might consider a
macro WIN32 as undefined and execute the code in a #ifndef WIN32 block. To emulate this
behavior when running a Polyspace analysis, use this option to specify WIN32 as undefined.

This option undefines these macros:

* Macros you defined by using the -D option. See Preprocessor definitions (-D).

* Macros that might be implicitly defined by the compiler.

* Macros that Polyspace enables by default to emulate compiler behavior. See Compiler (-
compiler).

If you define a macro by using a #define statement in your source code, this option cannot undefine
it.

Typically, you recognize from compilation errors that a certain macro must be undefined. For

instance, the following code does not compile if the macro WIN32 is defined.

#ifndef WIN32
int env_var;
#endif

void set() {

env_var=l;

}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifndef WIN32 statement. The underlying cause for the error is that the macro WIN32 is defined.
You must undefine WIN32.

Settings

No Default

2-71

2 Analysis Options

2-72

Using the e button, add a new row for each macro being undefined.
Tips

Your compiler specification determines the values of many compiler-specific macros. In case you want
to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

* To override a macro definition coming from a compiler specification, use the option
Preprocessor definitions (-D).

* To undefine the macro, use this option.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option multiple times.
Parameter: -U

No Default

Value: macro

Example (Bug Finder): polyspace-bug-finder -U HAVE MYLIB -U USE COM1

Example (Code Prover): polyspace-code-prover -U HAVE MYLIB -U USE COM1

Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE MYLIB -U

USE COM1

Example (Code Prover Server): polyspace-code-prover-server -U HAVE MYLIB -U

USE COM1

See Also
Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

Source code encoding (-sources-encoding)

Source code encoding (-sources-encoding)

Specify the encoding of source files

Description
Specify the encoding of the source files that you analyze with Polyspace.

Use this option only if you see compilation errors or display issues from non-ASCII characters in your
source files. The option forces an internal conversion of your source files from the specified encoding
to an UTF-8 encoding and might help resolve the issue.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -sources-encoding. See “Command-Line
Information” on page 2-74.

Why Use This Option

The analysis uses the default encoding of your operating system as the source code encoding. In most
cases, if your source code contains non-ASCII characters, for instance, Japanese or Korean
characters, the Polyspace analysis can interpret the characters and later display the source code
correctly.

If you still have compilation errors or display issues from non-ASCII characters, you might be using
an encoding that is different from the default encoding. You can then specify your source code
encoding explicitly using this option.

Settings
Default: system

system
The analysis uses the default encoding of the operating system.
shift-jis
The analysis uses the Shift JIS (Shift Japanese Industrial Standards) encoding, a character
encoding for the Japanese language.
is0-8859-1
The analysis uses the ISO/IEC 8859-1:1998 encoding, a character encoding that encodes what it
refers to as "Latin alphabet no.1", consisting of 191 characters from the Latin script.
windows-1252

The analysis uses the Windows-1252 encoding, a single-byte character encoding of the Latin
alphabet, used by default in the legacy components of Windows for English and some other
Western languages.

2-73

2 Analysis Options

2-74

UTF-8

The analysis uses the UTF-8 encoding, a variable width character encoding capable of encoding
all valid code points in Unicode.

Polyspace supports many more encodings. To specify an encoding that is not in the above list in the
Polyspace user interface, enter -sources-encoding encodingname in the Other field. In
particular, if your source files contain a mix of different encodings, you can use -sources-encoding
auto. In this mode, the analysis uses internal heuristics to determine the encoding of your source
files from their contents.

For the full list of supported encodings, at the command line, enter:
-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

Command-Line Information

Parameter: -sources-encoding

Default: system

Value: auto | system| shift-jis | is0-8859-1|windows-1252 | UTF-8

Example (Bug Finder): polyspace-bug-finder -sources-encoding windows-1252
Example (Code Prover): polyspace-code-prover -sources-encoding windows-1252
Example (Bug Finder Server): polyspace-bug-finder-server -sources-encoding
windows-1252

Example (Code Prover Server): polyspace-code-prover-server -sources-encoding
windows-1252

Polyspace supports many more encodings besides the above list. For the full list of supported
encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

See Also

Topics
“Specify Polyspace Analysis Options”

Code from DOS or Windows file system (-dos)

Code from DOS or Windows file system (-dos)

Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.
Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -dos. See “Command-Line Information” on page 2-
75.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or Windows file
system. The option helps you resolve case sensitivity and control character issues.

Settings

¥ On (default)
Analysis understands file names and include paths for Windows/DOS files

For example, with this option,
#include "..\mY _TEst.h""™M
#include "..\mY_other FILE.H""M
resolves to:

#include "../my test.h"
#include "../my other file.h"

In this mode, you see an error if your include folder has header files whose names differ only in
case.

Off
Characters are not controlled for files names or paths.

Command-Line Information

Parameter: -dos

Default: Off

Example (Bug Finder): polyspace-bug-finder -dos -I ./my copied include dir -D
test=1

2-75

2 Analysis Options

Example (Code Prover): polyspace-code-prover -dos -I ./my copied include dir -D
test=1

Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./

my copied include dir -D test=1

Example (Code Prover Server): polyspace-code-prover-server -dos -I ./

my copied include dir -D test=1

See Also

Topics
“Specify Polyspace Analysis Options”

2-76

Stop analysis if a file does not compile (-stop-if-compile-error)

Type

0O OeE

Stop analysis if a file does not compile (-stop-if-
compile-error)

Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.
Set Option

User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line and options file: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 2-78.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace analysis. This
sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might return some
results for files that do not compile. If a file with compilation errors contains a function definition, the
analysis considers the function undefined. This assumption can sometimes make the analysis less
precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time checks rely
more heavily on range propagation across functions.

Settings

+| On

The analysis stops even if a single compilation error occurs.

In the user interface of the Polyspace desktop products, you see the compilation errors on the
Output Summary pane.

Message File Line o
 werification starts at Thu Dec 17 22:26:17 2015

& corels) detected buk the werification uses 4 core(s),

identifier "x" is undefined iy _File.c 1

Failed compilation, my_Ffile.c

Yerifier has detected compilation error(s) in the code.

Exiting because of presvious error

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

2-77

2 Analysis Options

2-78

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace R20##n ProjectName date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

* In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

* In the Polyspace Access web interface, open the Review tab. Select Window > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding rule violations.
Off (default)

The analysis does not stop because of compilation errors, but only files without compilation errors
are analyzed. The analysis does not consider files that do not compile. If a file with compilation
errors contains a function definition, the analysis considers the function undefined. If the analysis
needs the definition of such a function, it makes broad assumptions about the function.

* The function return value can take any value in the range allowed by its data type.

* The function can modify arguments passed by reference so that they can take any value in the
range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-time check
can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, in the user interface of the Polyspace desktop products, the
Dashboard pane has a link, which shows that some files failed to compile. You can click the link
and see the compilation errors on the OQutput Summary pane.

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace R20##n ProjectName date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

* In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

* In the Polyspace Access web interface, open the Review tab. Select Window > Run Log.

Command-Line Information

Parameter:-stop-if-compile-error

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-compile-
error

Example (Code Prover): polyspace-code-prover -sources filename -stop-if-compile-
error

Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -stop-
if-compile-error

Example (Code Prover Server): polyspace-code-prover-server -sources filename -
stop-if-compile-error

Version History
Introduced in R2017a

Stop analysis if a file does not compile (-stop-if-compile-error)

See Also
File does not compile

Topics
“Specify Polyspace Analysis Options”

2-79

2 Analysis Options

2-80

Command/script to apply to preprocessed files (-
post-preprocessing-command)

Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.
Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -post-preprocessing-command. See
“Command-Line Information” on page 2-82.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or imprecisions of the
analysis while keeping your original source files untouched. For instance, suppose Polyspace does not
recognize a compiler-specific keyword. If you are certain that the keyword is not relevant for the
analysis, you can run a Perl script to remove all instances of the keyword. When you use this option,
the software removes the keyword from your preprocessed code but keeps your original code
untouched.

Use a script only if the existing analysis options do not meet your requirements. For instance:

* For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular expressions. For
regular expressions, use a script.

* For mapping your library function to a standard library function, use the option - code-
behavior-specifications.

However, the option supports mapping to only a subset of standard library functions. To map to an
unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this option.
Contact MathWorks® Support for guidance.

Settings

No Default

Enter full path to the command or script or click o navigate to the location of the command or
script. This script is executed before verification.

Command/script to apply to preprocessed files (-post-preprocessing-command)

Tips

Your script must be designed to process the standard output from preprocessing and produce its
results in accordance with that standard output.

Your script must preserve the number of lines in the preprocessed file. In other words, it must not
add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior on the
location of checks and macros in the Polyspace user interface.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path
to the script.

For example:

* To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

» To specify a Perl script replace keyword.pl that replaces all instances of a keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe absolute path
\replace keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as C:\Program
Files\Polyspace\R2019a\ and absolute path is the location of the Perl script. If the paths
contain spaces, use quotes to enclose the full path names.

Use this Perl script as template. The script removes all instances of the far keyword.
#!/usr/bin/perl
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Remove far keyword
$line =~ s/far//g;

Print the current processed line to STDOUT
print $line;

}

You can use Perl regular expressions to perform substitutions. For instance, you can use the
following expressions.

Expression Meaning

. Matches any single character except newline

[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[a-e] Matches any single letter not in the set a-e

\d Matches any single digit

\w Matches any single alphanumeric character or

x? Matches 0 or 1 occurrence of x

2-81

2 Analysis Options

2-82

Expression Meaning
x* Matches 0 or more occurrences of x
X+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.

Command-Line Information

Parameter: -post-preprocessing-command

Value: Path to executable file or command in quotes

No Default

Example in Linux® (Bug Finder): polyspace-bug-finder -sources file name -post-
preprocessing-command “pwd /replace keyword.pl

Example in Linux (Code Prover): polyspace-code-prover -sources file name -post-
preprocessing-command “pwd /replace keyword.pl

Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources

file name -post-preprocessing-command “pwd /replace keyword.pl

Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file name -post-preprocessing-command “pwd /replace keyword.pl

Example in Windows: polyspace-bug-finder -sources file name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My Scripts\replace keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply after the end of the code verification (-post-
analysis-command) | -regex-replace-rgx -regex-replace-fmt

Topics
“Specify Polyspace Analysis Options”
“Remove or Replace Keywords Before Compilation”

https://perldoc.perl.org/perlre#Regular-Expressions

Include (-include)

Include (-include)

Specify files to be #include-ed by each C file in analysis

Description

Specify files to be #include-ed by each C file involved in the analysis. The software enters the
#include statements in the preprocessed code used for analysis, but does not modify the original
source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -include. See “Command-Line Information” on
page 2-83.

Why Use This Option
There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors. Use this
option to provide the header file for analysis. Suppose you have compilation issues because Polyspace
does not recognize certain compiler-specific keywords. To work around the issues, #define the
keywords in a header file and provide the header file with this option.

Settings
No Default
Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include file.h>.

Command-Line Information

Parameter: -include

Default: None

Value: file (Use -include multiple times for multiple files)

Example (Bug Finder): polyspace-bug-finder -include “pwd /sources/a file.h -
include /inc/inc_file.h

Example (Code Prover): polyspace-code-prover -include "pwd’ /sources/a file.h -
include /inc/inc_file.h

Example (Bug Finder Server): polyspace-bug-finder-server -include " pwd /sources/
a _file.h -include /inc/inc_file.h

Example (Code Prover Server): polyspace-code-prover-server -include " pwd /
sources/a file.h -include /inc/inc_file.h

2-83

2 Analysis Options

See Also
Topics

“Specify Polyspace Analysis Options”
“Gather Compilation Options Efficiently”

2-84

Include folders (-1I)

Include folders (-I)

View include folders used for analysis

Description

This option is relevant only for the user interface of the Polyspace desktop products.
View the include folders used for analysis.
Set Option

This is not an option that you set in your project configuration. You can only view the include folders
in the configuration associated with a result. For instance, in the user interface:
* To add include folders, on the Project Browser, right-click your project. Select Add Source.

» To view the include folders that you used, with your results open, select Window > Show/Hide
View > Configuration. Under the node Environment Settings, you see the folders listed under
Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the Polyspace

desktop products. Unlike other options, you do not specify include folders on the Configuration
pane. Instead, you add your include folders on the Project Browser pane.

See Also
Include (-include) | -I

2-85

2 Analysis Options

2-86

Ignore link errors (-no-extern-C)

Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.
Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node. See “Dependency” on page 2-86 for other options that you must also
enable.

Command line and options file: Use the option -no-extern-C. See “Command-Line Information”
on page 2-86.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not in others.
Then, their linkage is not the same and it causes a link error according to the ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may not resolve
all the extern C linkage errors.

Settings

4/ On
Ignore linking errors if possible.
Off (default)
Stop analysis for linkage errors.

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information

Parameter: -no-extern-C

Default: off

Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C

Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C

Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -no-extern-C

Ignore link errors (-no-extern-C)

See Also

Topics
“Specify Polyspace Analysis Options”

2-87

2 Analysis Options

2-88

Constraint setup (-data-range-specifications)

Constrain global variables, function inputs and return values of stubbed functions

Description

Specify constraints (also known as data range specifications or DRS) for global variables, function
inputs and return values of stubbed functions using a Constraint Specification template file. The
template file is an XML file that you can generate in the Polyspace user interface.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -data-range-specifications. See “Command-
Line Information” on page 2-89.

Why Use This Option

Use this option to constrain certain objects in your code whose values are known only at run time, for
instance, user inputs or sensor values. Using correctly constrained objects might reduce false
positives or orange checks in Polyspace results.

Based on your source code, Polyspace makes assumptions about items such as variable ranges and
allowed buffer size for pointers. Sometimes these assumptions are broader than what you expect
because:

* You have not provided the complete code. For example, you did not provide some of the function
definitions.

* Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

For instance, an int variable representing a real life speed cannot have a value that is smaller than
zero or greater than the speed of light. Polyspace might assume that the variable has a range
[-2732... 2732-1]. Because of such broad assumptions:

* Code Prover might consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path does not occur at run time, the orange check indicates a false
positive.

* Bug Finder might produce false positives.

To reduce the number of such false positives, specify applicable constraints on global variables,
function inputs, and return values of stubbed functions.

After you specify your constraints, save them as an XML file to use them for subsequent analyses. If
your source code changes, update the previous constraints. Creating a new constraint template is not
necessary.

Constraint setup (-data-range-specifications)

Settings

No Default

Enter full path to the template file. Alternately, click Edit to open a Constraint Specification

wizard. This wizard allows you to generate a template file or navigate to an existing template file.

For more information, see “Specify External Constraints for Polyspace Analysis”.

Command-Line Information

Parameter: -data-range-specifications

Value: file

No Default

Example (Bug Finder): polyspace-bug-finder -sources file name -data-range-
specifications "C:\DRS\range.xml"

Example (Code Prover): polyspace-code-prover -sources file name -data-range-
specifications "C:\DRS\range.xml"

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
data-range-specifications "C:\DRS\range.xml"

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
data-range-specifications "C:\DRS\range.xml"

Examples

Specify Range of Runtime Variable to Reduce Orange Checks

In this code, the multiplication operation in the definition of tmp has an orange overflow check. This
check appears because Polyspace assumes that the return value of the function getSpeed() has a
range -2°32... 2732-1.

//filel.c
extern int getSpeed(); //Returns the reading of speedometer
int main(){

//. ..

int tmp = 2* getSpeed();

//. ..

return 0;

}

To resolve this orange check, constrain the return value of getSpeed () with a range
[0..30000000]. Create an XML file drs.xml that has this content:

<?xml version="1.0" encoding="UTF-8"?7>
<!--EDRS Version 2.0-->
<global>
<file name="C:\\Users\\example.c">
<function name="getSpeed" line="1" attributes="extern" main_generator called="disabl
<scalar name="return" line="1" base type="int32" complete type="int32" init mode:
</function>
</file>
</global>

After specifying the data range, run the verification again. Use the command:

2-89

2 Analysis Options

polyspace-code-prover filel.c -data-range-specifications drs.xml -lang c
The orange check is replaced by a green check.

extern int getSpeed(); //Returns the reading of speedometer
int main(){

// ...
int tmp = 2* getSpeed();
//. ..
return 0;
}
See Also

Functions to stub (-functions-to-stub) | Ignore default initialization of
global variables (-no-def-init-glob)

Topics

“Specify Polyspace Analysis Options”
“Specify External Constraints for Polyspace Analysis”

2-90

Ignore default initialization of global variables (-no-def-init-glob)

Ignore default initialization of global variables (-
no-def-init-glob)

Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless they are
explicitly initialized in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -no-def-init-glob. See “Command-Line
Information” on page 2-92.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default analysis follows
the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the instances where
global variables are not explicitly initialized.

Settings

+| On

Polyspace ignores implicit initialization of global and static variables. The verification generates a
red Non-initialized variable error if your code reads a global or static variable before writing to
it.

If you enable this option, global variables are considered uninitialized unless you explicitly
initialize them in the code. Note that this option overrides the option Variables to
initialize (-main-generator-writes-variables). Even if you initialize variables with
the generated main, this option forces the analysis to ignore the initialization.

Off (default)

Polyspace considers global variables and static variables to be initialized according to C99 or ISO
C++ standards. For instance, the default values are:

e Oforint
* 0Oforchar
* 0.0 for float

2-91

2 Analysis Options

Tips

Static local variables have the same lifetime as global variables even though their visibility is limited
to the function where they are defined. Therefore, the option applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -no-def-init-
glob

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
no-def-init-glob

See Also
Non-initialized variable

Topics
“Specity Polyspace Analysis Options”

2-92

Functions to stub (- functions-to-stub)

Functions to stub (-functions-to-stub)

Specify functions to stub during analysis

Description
Specify functions to stub during analysis.

For specified functions, Polyspace :

* Ignores the function definition even if it exists.
* Assumes that the function inputs and outputs have full range of values allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option - functions-to-stub. See “Command-Line
Information” on page 2-95.

Why Use This Option
If you want the analysis to ignore the code in a function body, you can stub the function.
For instance:

* Suppose you have not completed writing the function and do not want the analysis to consider the
function body. You can use this option to stub the function and then specify constraints on its
return value and modifiable arguments.

* Suppose the analysis of a function body is imprecise. The analysis assumes that the function
returns all possible values that the function return type allows. You can use this option to stub the
function and then specify constraints on its return value.

Settings

No Default

Enter function names or choose from a list.

Click “L” to add a field and enter the function name.
Click QR to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded functions,
the argument syntax. For the argument syntax, separate function arguments with semicolons. See the
following code and table for examples.

//simple function

2-93

2 Analysis Options

void test(int a, int b);
//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method
class A {

public:

int test(int varl, int var2);
}

//C++ template class method

template <class myType> class A

{

public:

myType test(myType varl, myType var2);
b
Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)
C++ template function test test (myType; myType)
C++ class method A::test A::test(int;int)
C++ template class A<myType>: :test A<myType>::test(myType;myTyp
method e)
Tips

* Code Prover makes assumptions about the arguments and return values of stubbed functions. For
example, Polyspace assumes that the return values of stubbed functions are full range. These
assumptions can affect checks in other sections of the code. See “Code Prover Assumptions About
Stubbed Functions” on page 14-7.

» If you stub a function, you can constrain the range of function arguments and return value. To
specify constraints, use the analysis option Constraint setup (-data-range-
specifications).

* When you use this option, you might see a change in file-level code complexity metrics such as
number of lines and comment density because one or more function bodies are no longer
analyzed.

» For C functions, these special characters are allowed:() < > ;

For C++ functions, these special characters are allowed: () <> ; * & []

Space characters are allowed for C++, but are not allowed for C functions.
* You cannot use this option to stub the following C++ functions:

* constexpr functions

* Function-try-blocks that associate a catch clause with an entire function body, for instance:

2-94

Functions to stub (- functions-to-stub)

Class()
try : Class(0.0) //delegate constructor
{

}
catch (...)

{

}
* Template functions with a parameter pack, for instance:

/...

// exception occurred on initialization

template <class T, class... T2>
X(Tn, T n2, T2... rest): X(rest...) {

v.insert(v.begin(), n);

v.insert(v.begin(), n2);

}

* Functions with auto return type, for instance:

template <typename F, typename... Args>
inline decltype(auto) invoke(F&& func, Args&&... args)
{

}

return invoke impl(eastl::forward<F>(func), eastl::forward<Args>(args)...);

Command-Line Information

Parameter: - functions-to-stub

No Default

Value: functionl[, function2[,...]]

Example (Code Prover): polyspace-code-prover -sources file name -functions-to-
stub function 1,function 2

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
functions-to-stub function 1, function 2

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”

2-95

2 Analysis Options

2-96

Libraries used (-library)

Specify libraries that you use in your program

Description
Specify libraries that you use in your program.

The analysis uses smart stubs for functions from those libraries instead of generic stubs and does not
attempt to check the function implementations. Using this option enables faster analysis without
losing precision and triggers library-specific checks on function calls.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option - library. See “Command-Line Information” on
page 2-97.

Why Use This Option

For faster and library-aware analysis, use this option. Unless you use this option, the analysis either
attempts to check the library implementation or if the implementation is not available, uses generic
stubs for library functions. Checking the function bodies can increase analysis time significantly while
using generic stubs can lead to loss of precision.

The option also triggers library-specific checks on function arguments. For instance, if you select the
option value autosar, a Bug Finder or Code Prover analysis checks arguments to functions from the
AUTOSAR RTE API for compliance with the AUTOSAR Standard.

Settings
Default: none

none
The analysis uses smart stubs only for functions from the C Standard Library.
autosar

The analysis uses smart stubs for AUTOSAR RTE API functions even if their implementations are
available.

The option also triggers AUTOSAR-specific checks on function arguments. For more information,
see the corresponding checkers:

* Bug Finder: Non-compliance with AUTOSAR specification

Besides setting the option, you must also explicitly enable the above checker (or enable all
checkers).

* Code Prover: Non-compliance with AUTOSAR specification

Libraries used (-library)

Setting the option is sufficient to enable the checker.

stdlibcxx

The analysis uses smart stubs for methods from C++ Standard Library containers even if their
implementations are available.

The containers whose methods are stubbed include std: :map, std: :deque,std: :vector and
std: :set. If you use this option and your code contains C++ container methods, the analysis log
contains a message:

n methods stubbed for better performance

where n is the number of methods stubbed.

Note that unlike functions from the C Standard Library, the stubs of C++ container methods are
not used to check for domain errors and other error conditions. The methods are stubbed to avoid
the unnecessary performance costs from analyzing their implementation. As a result, if you
invoke a C++ container method with incorrect arguments, you do not see errors that refer to the
incorrect invocation. But in some cases, you might see other errors that indirectly follow from the
incorrect invocation. For instance, if you invoke the std: :stack: :top() method on an empty
stack, you see a Non-initialized variable error even though the stack itself is initialized.

This option has effect only on a Code Prover analysis. A Bug Finder analysis discards
implementations of C++ container methods immediately after compilation and does not require
the smart stubbing.

Command-Line Information

Parameter: -library

No Default

Value: autosar | stdlibcxx

Example (Bug Finder): polyspace-bug-finder -sources file name -library autosar -
checkers autosar lib non_ compliance

Example (Code Prover): polyspace-code-prover -sources file name -library autosar
Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
library autosar -checkers autosar lib non compliance

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
library autosar

Version History
Introduced in R2021a

See Also

Topics
“Specify Polyspace Analysis Options”

2-97

2 Analysis Options

2-98

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)

Stub autogenerated functions that use lookup tables and model them more precisely

Description

This option is available only for model-generated code. The option is relevant only if you generate
code from a Simulink® model that uses Lookup Table blocks using MathWorks code generation
products.

Specify that the verification must stub autogenerated functions that use certain kinds of lookup tables
in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables” on page 6-9 in
Simulink Configuration Parameters, which performs the same task.

User interface (desktop products only): In your Polyspace project configuration, the option is on the
Inputs & Stubbing node.

Command line and options file: Use the option -stub-embedded-coder-lookup-table-
functions. See “Command-Line Information” on page 2-99.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code, the
functions corresponding to Lookup Table blocks also use lookup tables. The function names follow
specific conventions. The verification uses the naming conventions to identify if the lookup tables in
the functions use linear interpolation and no extrapolation. The verification then replaces such
functions with stubs for more precise verification.

Settings

#| On (default)

For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

* Does not check for run-time errors in the function body.

* Calls a function stub instead of the actual function at the function call sites. The stub ensures
that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses the function name. In your analysis results, you see that the function is not
analyzed. If you place your cursor on the function name, you see the following message:

Function has been recognized as an Embedded Coder Lookup-Table function.

It was stubbed by Polyspace to increase precision.

Unset the -stub-embedded-coder-lookup-table-functions option to analyze
the code below.

Off

The verification does not stub autogenerated functions that use lookup tables.

Tips

The option applies to only autogenerated functions. If you integrate your own C/C++ S-Function
using lookup tables with the model, these functions do not follow the naming conventions for
autogenerated functions. The option does not cause them to be stubbed. If you want the same
behavior for your handwritten lookup table functions as the autogenerated functions, use the
option -code-behavior-specifications and map your function to the

__ps_lookup table clip function.

If you run verification from Simulink, the option is on by default. For certification purposes, if you
want your verification tool to be independent of the code generation tool, turn off the option.

Command-Line Information

Parameter: -stub-embedded-coder-lookup-table-functions

Default: On

Example (Code Prover): polyspace-code-prover -sources file name -stub-embedded-
coder-lookup-table-functions

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
stub-embedded-coder-lookup-table-functions

Version History
Introduced in R2016b

See Also

Topics
“Specify Polyspace Analysis Options”

2-99

2 Analysis Options

2-100

Generate results for sources and (-generate-
results-for)

(To be removed) Specify files on which you want analysis results

Note This option applies only to coding rules and code metrics, which will be removed from Code
Prover in a future version. Use Generate results for sources and (-generate-results-
for) in Bug Finder instead. For more information, see “Compatibility Considerations”.

Description
Specify files on which you want analysis results.

By default, results appear on source files and header files in the same folder as the source files. You
can use this option to see results in other header files. If you use the option Do not generate
results for (-do-not-generate-results-for) to suppress entire folders, you can use this
option to unsuppress some subfolders or files in those folders.

The option applies only to coding rule violations and code metrics. You cannot suppress Code Prover
run-time checks from select source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -generate-results-for. See “Command-Line
Information” on page 2-102.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. Often, other header files belong to a third-party library. Though these header files are
required for a precise analysis, you are not interested in reviewing findings in those headers.
Therefore, by default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, change the default value of this option.

Note that in Polyspace as You Code, you cannot see results in headers #include-d through a source
file at all. The default behavior is to consider the headers in the same folder as the source file (or
subfolders) for analysis but suppress results found in the headers. You can use this option only to
expand the scope of which headers are considered during analysis. See also “Analysis Scope of
Polyspace as You Code”.

Generate results for sources and (-generate-results-for)

Settings

Default: source-headers

source-headers

Results appear on source files and header files in the same folder as the source files or in
subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

all-headers

Results appear on source files and all header files. The header files can be in the same folder as
source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument - sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument - I at the command line).

custom

Results appear on source files and the files that you specify. If you enter a folder name, results
appear on header files in that folder (and its subfolders).

Click EII}' to add a field. Enter a file or folder name.

Tips

1

Use this option in combination with appropriate values for the option Do not generate
results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for Do not generate results Final Result

sources and for

custom: custom: Results are displayed on
header files in C:\Includes

C:\Includes C:\Includes \Custom Library\ and its

\Custom_Library\ subfolders but not generated

for other header files in
C:\Includes.

custom: custom: Results are displayed on the
header file m\y header.hin

C:\Includes C:\Includes\ C:\Includes\ but not

\my_header.h generated for other header

files in C:\Includes\ and
its subfolders.

2-101

2 Analysis Options

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 Ifyou choose all-headers for this option, results are displayed on all header files irrespective
of what you specify for the option Do not generate results for.

Command-Line Information

Parameter: -generate-results-for

Value: source-headers | all-headers | custom=filel[,file2[,...]1]]
custom=folderl[, folder2[,...]1]

Example (Bug Finder): polyspace-bug-finder -lang c -sources file name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file name -misra2
required-rules -generate-results-for custom="C:\usr\include"

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources

file name -misra2 required-rules -generate-results-for custom="C:\usr
\include"

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file name -misra2 required-rules -generate-results-for custom="C:\usr
\include"

Version History
Introduced in R2016a

To be removed from Code Prover
Warns starting in R2022a

If you use the option -generate-results-for in a Code Prover analysis, Polyspace issues a
warning. The workflow for checking coding rule violation will be removed from Code Prover in a
future release. To check for coding rule violations, use Bug Finder. For instance, at the command line,
replace this command:with this command:

#DOC Command
polyspace-bug-finder -lang c¢ -sources file name”™
-misra2 required-rules -do-not-generate-results-for custom="C:\usr\include"

#Linux Command
polyspace-bug-finder -lang c -sources file name\
-misra2 required-rules -do-not-generate-results-for custom="C:\usr\include"

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -generate-results-forin a Code Prover analysis is not recommended. To check for coding
rule violations, use Bug Finder.

See Also

Topics
“Specify Polyspace Analysis Options”

2-102

Generate results for sources and (-generate-results-for)

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-103

2 Analysis Options

2-104

Do not generate results for (-do-not-generate-
results-for)

(To be removed) Specify files on which you do not want analysis results

Note This option applies only to coding rules and code metrics, which will be removed from Code
Prover in a future version. Use Do not generate results for (-do-not-generate-
results-for) in Bug Finder instead. For more information, see “Compatibility Considerations”.

Description
Specify files on which you do not want analysis results.

By default, results do not appear on header files (unless they are in the same folder as the source
files). You can use this option to suppress results from some source files too (or from header files in
the same folders as source files). If you use the option Generate results for sources and (-
generate-results-for) to show results on some include folders, you can use this option to
suppress results from some subfolders or files in those include folders.

The option applies only to coding rule violations and code metric. You cannot suppress Code Prover
run-time checks from source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -do-not-generate-results-for. See
“Command-Line Information” on page 2-107.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. If you are not interested in reviewing the findings in those headers, change the
default value of this option.

Note that in Polyspace as You Code, the default behavior is to not even analyze the headers in non-

source folders. You can use this option to expand the scope of not analyzed files to all headers or a
different subset of headers. See also “Analysis Scope of Polyspace as You Code”.

Settings

Default: include-folders

Do not generate results for (-do-not-generate-results-for)

include-folders

Results are not generated for header files in include folders (and their subfolders).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument - I at the command line).

If an include folder is a subfolder of a source folder, results are generated for files in that include
folder even if you specify the option value include-folders. In this situation, use the option
value custom and explicitly specify the include folders to ignore.

all-headers

Results are not generated for all header files. The header files can be in the same folder as source
files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument - I at the command line).

custom

Results are not generated for the files that you specify. If you enter a folder name, results are
suppressed from files in that folder (and its subfolders).

Click I:Il:ll:I to add a field. Enter a file or folder name.

Tips

1

Use this option appropriately in combination with appropriate values for the option Generate
results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for Do not generate results Final Result

sources and for

custom: custom: Results are displayed on
header files in C:\Includes

C:\Includes C:\Includes \Custom Library\ and its

\Custom Library\ subfolders but not generated

for other header files in
C:\Includes.

custom: custom: Results are displayed on the
header file my header.hin

C:\Includes C:\Includes\ C:\Includes\ but not

\my_header.h generated for other header

filesin C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2-105

2 Analysis Options

2-106

If you choose all-headers for this option, results are suppressed from all header files
irrespective of what you specify for the option Generate results for sources and.

If a defect or coding rule violation involves two files and you do not generate results for one of
the files, the defect or rule violation still appears. For instance, if you define two variables with
similar-looking names in files myFile. cpp and myFile. h, you get a violation of the MISRA® C+
+ rule 2-10-1, even if you do not generate results for myFile.h. MISRA C++ rule 2-10-1 states
that different identifiers must be typographically unambiguous.

The following results can involve more than one file:
MISRA C: 2004 Rules

* MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the significance
of more than 31 characters.

* MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

* MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one file and
only one file.

* MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly one external
definition.

MISRA C: 2012 Directives and Rules

* MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

* MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space shall be
distinct.

* MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope.

e MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
e MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.

* MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once in one and
only one file.

* MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly one external
definition.

MISRA C++ Rules

* MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically unambiguous.

* MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

 MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.

* MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple translation units
shall be declared in one and only one file.

* MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly one definition.
* MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or indirectly.

* MISRA C++ Rule 15-4-1 — If a function is declared with an exception-specification, then all
declarations of the same function (in other translation units) shall be declared with the same
set of type-ids.

Do not generate results for (-do-not-generate-results-for)

JSF C++ Rules

* JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely on
significance of more than 64 characters.

* JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the presence/absence
of the underscore character, the interchange of the letter O with the number 0 or the letter D,
the interchange of the letter I with the number 1 or the letter 1, the interchange of the letter
S with the number 5, the interchange of the letter Z with the number 2 and the interchange of
the letter n with the letter h.

* JSF C++ Rule 137 — All declarations at file scope should be static where possible.
* JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

* Variable shadowing — Variable hides another variable of same name with nested scope.
 Declaration mismatch — Mismatch occurs between function or variable declarations.

4 If a global variable is never used after declaration, it appears in Code Prover results as an unused
global variable. However, if it is declared in a file for which you do not want results, you do not
see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace typically
shows the result on the macro definition instead of the macro occurrences so that you review the
result only once. Even if the macro is used in a suppressed file, the result is still shown on the
macro definition, if the definition occurs in an unsuppressed file.

Command-Line Information

Parameter: -do-not-generate-results-for

Value: all-headers | include-folders | custom=filel[,file2[,...]]|
custom=folderl[,folder2[,...]]

Example (Bug Finder): polyspace-bug-finder -lang c -sources file name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources

file name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources

file name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"

Version History
Introduced in R2016a

To be removed from Code Prover
Warns starting in R2022a

If you use the option -do-not-generate-results-for in a Code Prover analysis, Polyspace issues
a warning. The workflow for checking coding rule violation will be removed from Code Prover in a
future release. To check for coding rule violations, use Bug Finder. For instance, at the command line,
replace this command:with this command:

2-107

2 Analysis Options

2-108

#DOC Command
polyspace-bug-finder -lang c¢ -sources file name”™
-misra2 required-rules -do-not-generate-results-for custom="C:\usr\include"

#Linux Command
polyspace-bug-finder -lang c -sources file name\
-misra2 required-rules -do-not-generate-results-for custom="C:\usr\include"

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -do-not-generate-results-forin a Code Prover analysis is not recommended. To check
for coding rule violations, use Bug Finder.

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)

Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows, pC/OS II and
other multithreading functions.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-110 for other options that you must enable or
disable.

Command line and options file: Use the option -enable-concurrency-detection. See
“Command-Line Information” on page 2-110.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of multithreading
functions. In Bug Finder, automatic concurrency detection is enabled by default. In Code Prover, you
have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover analysis. In
those cases, you can choose to not enable this option and explicitly specify your multitasking model.
See “Configuring Polyspace Multitasking Analysis Manually”.

Settings

+| On

If you use one of the supported functions for multitasking, the analysis automatically detects your
multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of threads, see
“Auto-Detection of Thread Creation and Critical Section in Polyspace”.

Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring Polyspace
Multitasking Analysis Manually”.

2-109

2 Analysis Options

2-110

Dependencies

If you enable this option, your code must contain a main function. You cannot use the Code Prover
options to generate a main.

Command-Line Information

Parameter: -enable-concurrency-detection

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -enable-
concurrency-detection

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
enable-concurrency-detection

See Also
Show global variable sharing and usage only (-shared-variables-mode)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”

“Auto-Detection of Thread Creation and Critical Section in Polyspace”

External multitasking configuration

External multitasking configuration

Enable setup of multitasking configuration from external file definitions

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

* ARXML files for AUTOSAR projects
* OIL files for OSEK projects

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node.
Command line and options file: See “Command-Line Information” on page 2-111.

Why Use This Option

If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if your OSEK
project includes OIL files, Polyspace can parse these files. The software sets up tasks, interrupts,
cyclical tasks, and critical sections. You do not have to set them up manually.

Settings

+| On

Polyspace parses the external files that you provide in the format that you specify to set up the
multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.
autosar
Look for and parse AUTOSAR XML files to extract multitasking description.
Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By using the -

osek-multitasking option or the -autosar-multitasking option, you enable external
multitasking configuration.

Version History
Introduced in R2018a

2-111

2 Analysis Options

See Also

ARXML files selection (-autosar-multitasking) |0IL files selection (-osek-
multitasking)

Topics

“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

2-112

OIL files selection (-osek-multitasking)

OIL files selection (-osek-multitasking)

Set up multitasking configuration from OIL file definition

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify the OIL files that Polyspace parses to set up the multitasking configuration of your OSEK
project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-117 for other options you must also enable.

Command line: and options file Use the option -osek-multitasking. See “Command-Line
Information” on page 2-117.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up tasks, interrupts, cyclical
tasks, and critical sections. You do not have to set them up manually.

Settings

41 0n

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their subfolders.
custom

Look for OIL files on the specified path and the path subfolders. You can specify a path to the OIL
files or to the folder containing the files.

When you select this option, in your source code, Polyspace supports these OSEK multitasking
keywords:

* TASK

* DeclareTask

* ActivateTask

* DeclareResource

* GetResource

* ReleaseResource

+ ISR

* DeclareEvent

2-113

2 Analysis Options

2-114

* DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM definitions. The
analysis uses these definitions and the supported multitasking keywords to configure tasks,
interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and run an
analysis on this project. To try the steps in this example, use the demo files in the folder
polyspaceroot/help/toolbox/bugfinder/examples/External multitasking/0SEK or
polyspaceroot/help/toolbox/codeprover/examples/External multitasking/0SEK.
polyspaceroot is the Polyspace installation folder. The analysis results apply to this example code.

OIL files selection (-osek-multitasking)

#include <assert.h>
#include "include/example osek multi.h"

int varl;
int var2;
int var3;

DeclareAlarm(Cyclic_task activate);
DeclareResource(resl);
DeclareTask(init);
TASK(afterinitl);

TASK(init) // task
{

var2++;

ActivateTask(afterinitl);

var3++;

GetResource(resl); // critical section begins
varl++;

ReleaseResource(resl); // critical section ends

}

TASK(afterinitl) // task
{

var3++;

var2++;

GetResource(resl); // critical section begins
varl++;

ReleaseResource(resl); // critical section ends

}
int var4;
void func()

{

}

TASK(Cyclic task) // cyclic task
{

}

vard++;

func();

void main()

{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External multitasking/0SEK or polyspaceroot/help/toolbox/codeprover/
examples/External multitasking/0SEK to your machine, for instance in

C:\Polyspace worskpace\OSEK.

2 Run an analysis on your OSEK project by using the command:

* Bug Finder:

2-115

2 Analysis Options

polyspace-bug-finder -sources ©
C:\Polyspace workspace\OSEK\example osek multitasking.c *
-osek-multitasking auto

* Code Prover:
polyspace-code-prover -sources *

C:\Polyspace workspace\0OSEK\example osek multitasking.c *
-osek-multitasking auto

* Bug Finder Server:
polyspace-bug-finder-server -sources *

C:\Polyspace workspace\0OSEK\example osek multitasking.c *
-osek-multitasking auto

¢ Code Prover Server:
polyspace-code-prover-server -sources *

C:\Polyspace workspace\0OSEK\example osek multitasking.c *
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write operation from
tasks init and afterinitl. See Data race.

#include <assert.h>
#include "include/example osek multi.h"

int varl;
int var2;
int var3;

There is no defect on var2 since afterinitl goes to an active state (ActivateTask()) after init
increments var2. Similarly, there is no defect on varl because it is protected by the
GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is used in tasks
init and afterinitl with no protection from interruption during the read and write operations.
The analysis also shows that the cyclic task operation on var4 can potentially cause an overflow. See
Potentially unprotected variable and Overflow.

#include <assert.h>
#include "include/example osek multi.h"

int varl;

int var2;
int var3;

Qéid func()

{
}

vard++;

Variable var2 is not shared because afterinitl goes to an active state (ActivateTask()) after
init increments var2. Variable varl is a protected variable on page 8-8 through the critical
sections from the GetResource() and ReleaseResource() calls.

2-116

OIL files selection (-osek-multitasking)

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL files, open the
Concurrency window from the Dashboard pane.

Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations

» Make sure that you declare all tasks by using the DeclareTask or TASK keywords before you
pass those tasks as parameters to functions or macros that expect a task. For example , if you pass
task foo to ActivateTask without using DeclareTask(foo) ; first, Polyspace considers task
foo undefined which results in a compilation error.

» The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

* Polyspace ignores syntax elements of your OIL files that do not follow the syntax defined here.

Dependencies

To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information

Parameter: -osek-multitasking

Value: auto | custom="filel [, file2, dirl,...]'

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources source path -I include path
-osek-multitasking custom='path\to\filel.oil, path\to\dir'
Example (Code Prover): polyspace-code-prover -sources source path -1I

include path -osek-multitasking custom='path\to\filel.oil, path\to\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources source path -I
include path -osek-multitasking custom='path\to\filel.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources source path -
I include path -osek-multitasking custom='path\to\filel.oil, path\to\dir'

Version History
Introduced in R2017b

See Also
Show global variable sharing and usage only (-shared-variables-mode)
Topics

“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

2-117

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

2 Analysis Options

2-118

ARXML files selection (-autosar-multitasking)

Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug Finder™.
This option is not available for code generated from MATLAB code or Simulink models.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of your
AUTOSAR project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-119 for other options you must also enable.

Command line: and options file Use the option -autosar-multitasking. See “Command-Line
Information” on page 2-117.

Why Use This Option

If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements, Polyspace can parse
these files to set up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them
up manually.

Settings

+| On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking API in your
source code to declare and define tasks and interrupts. Polyspace supports these OSEK multitasking
keywords:

+ TASK

* DeclareTask

* ActivateTask

* DeclareResource

* GetResource

* ReleaseResource

+ ISR

* DeclareEvent

* DeclareAlarm

ARXML files selection (-autosar-multitasking)

Polyspace parses the ARXML files that you provide for OsTask, 0sIsr, OsResource, 0sAlarm, and
OsEvent definitions. The analysis uses these definitions and the supported multitasking keywords to
configure tasks, interrupts, cyclical tasks, and critical sections.

To see how Polyspace models the 0sTask, 0sIsr, and OsResource definitions from your ARXML
files, open the Concurrency window from the Dashboard pane. In that window, under the Entry
points column, the names of the elements are extracted from their <SHORT - NAME> values in the
ARXML files.

Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations

* The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

* Polyspace supports multitasking configuration only from ARXML files for AUTOSAR specification
version 4.0 and later.

Dependencies

To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information

Parameter: -autosar-multitasking

Value: filel [,file2, dirl,...]

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources source path -1 include path
-autosar-multitasking C:\Polyspace Workspace\AUTOSAR\myFile.arxml

Example (Bug Finder Server): polyspace-bug-finder-server -sources source path -I
include path -autosar-multitasking C:\Polyspace Workspace\AUTOSAR
\myFile.arxml

Version History
Introduced in R2018a

See Also

External multitasking configuration|OQOIL files selection (-osek-multitasking) |
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection) | Show global variable sharing and usage only (-shared-variables-
mode)

Topics

“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

2-119

2 Analysis Options

2-120

Configure multitasking manually

Consider that code is intended for multitasking

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether your code is a multitasking application. This option allows you to manually configure
the multitasking structure for Polyspace.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node.

Command line and options file: See “Command-Line Information” on page 2-121.
Why Use This Option

By default, Bug Finder determines your multitasking model from your use of multithreading
functions. In Code Prover, you have to enable automatic concurrency detection with the option
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection). However, in some cases, using automatic concurrency detection can slow down the
Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly specify your
multitasking model by using this option. Once you select this option, you can explicitly specify your
entry point functions, cyclic tasks, interrupts and protection mechanisms for shared variables, such
as critical section details.

A Code Prover verification uses your specifications to determine:
* Whether a global variable is shared.

See “Global Variables”.
o Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings

¥ On
The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other Polyspace options. See
“Configuring Polyspace Multitasking Analysis Manually”.

Configure multitasking manually

Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

+ Ifamain exists, Code Prover verifies only those functions that are called by the main.

« Ifamain does not exist, Polyspace verifies the functions that you specify. To verify the
functions, Polyspace generates a main function and calls functions from the generated main
in a sequence that you specify. For more information, see Verify module or library (-
main-generator).

Tips

If you run a file by file verification in Code Prover, your multitasking options are ignored. See Verify
files independently (-unit-by-unit).

Command-Line Information

There is no single command-line option to turn on multitasking analysis. By using any of the options
Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or Interrupts (-interrupts),
you turn on multitasking analysis.

See Also

-preemptable-interrupts | -non-preemptable-tasks | Tasks (-entry-points) | Cyclic
tasks (-cyclic-tasks) |Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

2-121

2 Analysis Options

2-122

Tasks (-entry-points)

Specify functions that serve as tasks to your multitasking application

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that serve as tasks to your code. If the function does not exist, the verification
warns you and continues the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-123 for other options you must also enable.

Command line and options file: Use the option -entry-points. See “Command-Line
Information” on page 2-123.

Why Use This Option
Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:
* Whether a global variable is shared.

See “Global Variables”.

¢ Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click EII}I to add a field and enter the function name.

Click QR to list functions in your code. Choose functions from the list.

Tasks (-entry-points)

Dependencies

To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
* In Code Prover, the functions representing entry points must have the form

void functionName (void)

» If a function func takes arguments or returns a value, you cannot use it directly as an entry point.
To use func as an entry point:, call func from a wrapper void-void function and specify the
wrapper as an entry point. See “Configuring Polyspace Multitasking Analysis Manually”.

» If you specify a function as a task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func _name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.

» Ifyou run a file by file verification in Code Prover, your multitasking options are ignored. See
Verify files independently (-unit-by-unit).

* The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information

Parameter: -entry-points

No Default

Value: functionl[, function2[,...]1]

Example (Bug Finder): polyspace-bug-finder -sources file name -entry-points
func 1,func 2

Example (Code Prover): polyspace-code-prover -sources file name -entry-points
func 1,func 2

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
entry-points func 1,func 2

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
entry-points func 1,func 2

See Also

Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) | -preemptable-
interrupts | -non-preemptable-tasks | Show global variable sharing and usage
only (-shared-variables-mode)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

2-123

2 Analysis Options

2-124

Cyclic tasks (-cyclic-tasks)

Specify functions that represent cyclic tasks

Description
The option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent cyclic tasks. The analysis assumes that operations in the function
bOdy:
* Can execute any number of times.

* Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and interrupts are specified with the option
Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task as
nonpreemptable. See -non-preemptable-tasks. For examples, see “Define Task Priorities for
Data Race Detection in Polyspace”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-125 for other options you must also enable.

Command line and options file: Use the option -cyclic-tasks. See “Command-Line
Information” on page 2-126.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you specify must
have the prototype:

void function _name(void);

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and other tasks.

* Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with each other. If
the operations use the same shared variable without protection, a data race can occur.

If both operations are atomic, to see the defect, you have to enable the checker Data race
including atomic operations.

* Data race between a preemptable task and a nonpreemptable task or interrupt:
* An atomic operation in a preemptable task cannot interfere with an operation in a

nonpreemptable task or an interrupt. Even if the operations use the same shared variable
without protection, a data race cannot occur.

Cyclic tasks (-cyclic-tasks)

* A nonatomic operation in a preemptable task also cannot interfere with an operation in a
nonpreemptable task or an interrupt. However, the latter operation can interrupt the former.
Therefore, if the operations use the same shared variable without protection, a data race can
occur.

For more information, see:

» “Define Task Priorities for Data Race Detection in Polyspace”
* “Concurrency Defects”

A Code Prover verification uses your specifications to determine:
* Whether a global variable is shared.

See “Global Variables”.
e Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.
Settings
No Default

Enter function names or choose from a list.

Click I:IIZII:I to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
* In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)

« If a function func takes arguments or returns a value, you cannot use it directly as a cyclic task.
To use func as a cyclic task:, call func from a wrapper void-void function and specify the
wrapper as a cyclic task. See “Configuring Polyspace Multitasking Analysis Manually”.

» Ifyou specify a function as a cyclic task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.

» Ifyou run a file by file verification in Code Prover, your multitasking options are ignored. See
Verify files independently (-unit-by-unit).

2-125

2 Analysis Options

* The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

* Code Prover interprets this option with some limitations. The reason is that Code Prover considers
all operations as potentially non-atomic and interruptible. This overapproximation leads to
situations where the option might appear to be ignored. For an example, see “Effect of Task
Priorities in Code Prover”.

Command-Line Information

Parameter: -cyclic-tasks

No Default

Value: functionl[, function2[,...]]

Example (Bug Finder): polyspace-bug-finder -sources file name -cyclic-tasks
func_1,func_ 2

Example (Code Prover): polyspace-code-prover -sources file name -cyclic-tasks
func_1,func_ 2

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
cyclic-tasks func 1,func 2

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
cyclic-tasks func 1,func 2

Version History
Introduced in R2016b

See Also

-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-interrupts) |
Tasks (-entry-points) | Show global variable sharing and usage only (-shared-
variables-mode)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”

“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Task Priorities for Data Race Detection in Polyspace”

2-126

Interrupts (-interrupts)

Interrupts (-interrupts)

Specify functions that represent nonpreemptable interrupts

Description
The option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent nonpreemptable interrupts. The analysis assumes that operations in
the function body:

* Can execute any number of times.

* Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and cyclic tasks are specified with the option
Cyclic tasks (-cyclic-tasks).

You can also make interrupts preemptable.

* To model an interrupt that can be interrupted by other interrupts, specify the interrupt as
preemptable. See -preemptable-interrupts. For examples, see “Define Task Priorities for
Data Race Detection in Polyspace”.

* To make only a section of an interrupt preemptable, call a routine enabling all interrupts
before that section and call another routine disabling all interrupts after the section is
complete. For instance, if you specify the routine isr() as an interrupt, it is nonpreemptable
by default. However, within isr(), if you call a routine enabling all interrupts, the section
following the call is preemptable till you call another routine disabling all interrupts:

void isr() {
x++; //Nonpreemptable
enable all interrupts(); //Routine enabling interrupts
y++; //Preemptable
disable_all_interrupts(); //Routine disabling interrupts
z++; //Nonpreemptable

}

For information on how to enable and disable all interrupts, see Disabling all
interrupts (-routine-disable-interrupts -routine-enable-interrupts).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-128 for other options you must also enable.

Command line and options file: Use the option -interrupts. See “Command-Line Information”
on page 2-129.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you specify must
have the prototype:

void function name(void);

2-127

2 Analysis Options

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other tasks:

* Data race between two interrupts:

Two operations in different interrupts cannot interfere with each other (unless one of the
interrupts is preemptable). Even if the operations use the same shared variable without
protection, a data race cannot occur.

* Data race between an interrupt and another task:

* An operation in an interrupt cannot interfere with an atomic operation in any other task. Even
if the operations use the same shared variable without protection, a data race cannot occur.

* An operation in an interrupt can interfere with a nonatomic operation in any other task unless
the other task is also a nonpreemptable interrupt. Therefore, if the operations use the same
shared variable without protection, a data race can occur.

For more information, see:

» “Define Task Priorities for Data Race Detection in Polyspace”
* “Concurrency Defects”

A Code Prover verification uses your specifications to determine:
* Whether a global variable is shared.

See “Global Variables”.
* Whether a run-time error can occur.
For instance, if the operation var=INT MAX; occurs in an interrupt and var++ occurs in the body

of a task, an overflow can occur if the interrupt executes before the operation in the task. The
analysis detects the possible overflow.

Settings
No Default

Enter function names or choose from a list.

Click EII}I to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
* In Code Prover, the functions representing interrupts must have the form

void functionName (void)

2-128

Interrupts (-interrupts)

» If a function func takes arguments or returns a value, you cannot use it directly as an interrupt.
To use func as an interrupt, call func from a wrapper void-void function and specify the
wrapper as an interrupt. See “Configuring Polyspace Multitasking Analysis Manually”.

» Ifyou specify a function as an interrupt, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.

* Ifyou run a file by file verification in Code Prover, your multitasking options are ignored. See
Verify files independently (-unit-by-unit).

* The Polyspace multitasking analysis assumes that an interrupt cannot interrupt itself.

* Code Prover interprets this option with some limitations. The reason is that Code Prover considers
all operations as potentially non-atomic and interruptible. This overapproximation leads to
situations where the option might appear to be ignored. For an example, see “Effect of Task
Priorities in Code Prover”.

Command-Line Information

Parameter: -interrupts

No Default

Value: functionl[, function2[,...]]

Example (Bug Finder): polyspace-bug-finder -sources file name -interrupts
func_1,func 2

Example (Code Prover): polyspace-code-prover -sources file name -interrupts
func_1,func 2

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
interrupts func 1,func 2

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
interrupts func 1,func 2

Version History
Introduced in R2016b

See Also

-preemptable-interrupts | -non-preemptable-tasks | Tasks (-entry-points) | Cyclic
tasks (-cyclic-tasks) |Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts) | Show global variable sharing and usage only (-
shared-variables-mode)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”

“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Task Priorities for Data Race Detection in Polyspace”

2-129

2 Analysis Options

Critical section details (-critical-section-begin
-critical-section-end)

Specify functions that begin and end critical sections

Description
This option is not available for code generated from MATLAB code or Simulink models.

When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance, Lock() and
unlock() in above example).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-131 for other options you must also enable.

Command line and options file: Use the option -critical-section-beginand -critical-
section-end. See “Command-Line Information” on page 2-132.

Why Use This Option

When a task my task calls a lock function my lock, other tasks calling my lock must wait till
my task calls the corresponding unlock function. Therefore, critical section operations in the other
tasks cannot interrupt critical section operations in my task.

For instance, the operation var++in my taskl and my task?2 cannot interrupt each other.

int var;

void my taskl() {
my lock();
var++;
my_unlock();

}

void my task2() {
my lock();
var++;
my _unlock();

}

Using your specifications, a Code Prover verification checks if your placement of lock and unlock
functions protects all shared variables from concurrent access. When determining values of those
variables, the verification accounts for the fact that critical sections in different tasks do not interrupt
each other.

2-130

Critical section details (-critical-section-begin -critical-section-end)

A Bug Finder analysis uses the critical section information to look for concurrency defects such as
data race and deadlock.

Settings

No Default

Click I:II:II:I to add a field.

+ In Starting routine, enter name of lock function.
* In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

Click EII}I to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips

* You can also use primitives such as the POSIX functions pthread mutex lock and
pthread mutex unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in
Polyspace”.

» For function calls that begin and end critical sections, Polyspace ignores the function arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting routine: my lock

Ending routine: my unlock

void my taskl() { void my task2() {
my lock(1); my lock(2);
/* Critical section code */ /* Critical section code */
my unlock(1); my _unlock(2);

} }

To work around the limitation, see “Define Critical Sections with Functions That Take Arguments”.

» The functions that begin and end critical sections must be functions. For instance, if you define a
function-like macro:

#define init() num_ locks++

You cannot use the macro init () to begin or end a critical section.
* When you use multiple critical sections, you can run into issues such as:

2-131

2 Analysis Options

2-132

+ Deadlock: A sequence of calls to lock functions causes two tasks to block each other.

* Double lock: A lock function is called twice in a task without an intermediate call to an unlock
function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects”.

Then, use Polyspace Code Prover to detect if your placement of lock and unlock functions actually
protects all shared variables from concurrent access. See “Global Variables”.

* When considering possible values of shared variables, a Code Prover verification takes into
account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking, the
software does not take your specifications into account and considers that the variable can be
concurrently accessed.

Command-Line Information

Parameter: -critical-section-begin| -critical-section-end

No Default

Value: functionl:csl[, function2:cs2[,...]]

Example (Bug Finder): polyspace-bug finder -sources file name -critical-section-
begin func begin:csl -critical-section-end func end:csl
Example (Code Prover): polyspace-code-prover -sources file name -critical-
section-begin func begin:csl -critical-section-end func _end:csl

Example (Bug Finder Server): polyspace-bug finder-server -sources file name -
critical-section-begin func begin:csl -critical-section-end func end:csl
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
critical-section-begin func begin:csl -critical-section-end func end:csl

See Also

Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Temporally exclusive tasks (-temporal-exclusions-file) | -non-preemptable-tasks
| -preemptable-interrupts

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”

“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”

“Define Critical Sections with Functions That Take Arguments”
“Concurrency Defects”

“Global Variables”

Temporally exclusive tasks (-temporal-exclusions-file)

Temporally exclusive tasks (-temporal-
exclusions-file)

Specify entry point functions that cannot execute concurrently

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify entry point functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-133 for other options you must also enable.

Command line and options file: Use the option -temporal-exclusions-file. See “Command-
Line Information” on page 2-134.

Why Use This Option
Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive protects all
shared variables from concurrent access. When determining possible values of those shared
variables, the verification accounts for the fact that temporally exclusive tasks do not interrupt each
other. See “Global Variables”.

A Bug Finder analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See “Concurrency Defects”.

Settings

No Default

Click “Lr” to add a field. In each field, enter a space-separated list of functions. Polyspace considers
that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

Click EI'_F' to add a field and enter the function names.

Click 2ty to list functions in your code. Choose functions from the list.

Dependencies

To enable this option in the user interface of the desktop products:

2-133

2 Analysis Options

2-134

» Select the option Configure multitasking manually .

* Specify function names for Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts).

You can then specify some of these functions as temporally exclusive tasks. Alternatively, if you
specify your multitasking configuration using external files with the option External
multitasking configuration, some of the functions from your external files can be specified as
temporally exclusive.

The ability to specify temporally exclusive tasks is not supported for automatically detected thread
creation routines such as pthread create. These routines can be invoked at different points in the
code to create separate threads. However, the temporal exclusion option does not support specifying
two separate invocations of the same routine at different points in the code.

Tips

When considering possible values of shared variables, a Code Prover verification takes into account
your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking in Code
Prover, the software does not take your specifications into account and considers that the variable
can be concurrently accessed.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

* On each line, enter one group of temporally excluded tasks.
* Within a line, the tasks are separated by spaces.

To enter comments, begin with #. For an example, see the file polyspaceroot\polyspace
\examples\cxx\Code Prover Example\sources\temporal exclusions.txt. Here,
polyspaceroot is the Polyspace installation folder, for example C:\Program Files\Polyspace
\R2019a.

Parameter: -temporal-exclusions-file

No Default

Value: Name of temporal exclusions file

Example (Bug Finder): polyspace-bug-finder -sources file name -temporal-
exclusions-file "C:\exclusions file.txt"

Example (Code Prover): polyspace-code-prover -sources file name -temporal-
exclusions-file "C:\exclusions file.txt"

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
temporal-exclusions-file "C:\exclusions file.txt"

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
temporal-exclusions-file "C:\exclusions file.txt"

See Also

Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Critical section details (-critical-section-begin -critical-section-end) | -
non-preemptable-tasks | -preemptable-interrupts

Temporally exclusive tasks (-temporal-exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”

“Global Variables”

2-135

2 Analysis Options

Set checkers by file (-checkers-selection-file)

(To be removed) Define a custom set of coding standards checks for your analysis

Note This option applies only to coding rules and code metrics, which will be removed from Code
Prover in a future version. Use Set checkers by file (-checkers-selection-file) in Bug
Finder instead. For more information, see “Compatibility Considerations”.

Description

Specify the full path of a configuration XML file where you define custom selections of coding
standards checkers. In the same XML file, you can specify a custom selection of checkers for each of
these coding standards:

* MISRA C:2004

* MISRA C:2012

+ MISRA C++

* JSFAVC++

* AUTOSAR C++14 (Bug Finder only)

» CERT® C (Bug Finder only)

* CERT C++ (Bug Finder only)

» ISO/IEC TS 17961 (Bug Finder only)

» Polyspace Guidelines (Bug Finder only)

You can also define custom rules to match identifiers in your code to text patterns you specify.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -checkers-selection-file. See “Command-
Line Information” on page 2-139.

When you enable this option, set the coding standards that you select to from-file to use the
specified configuration file.

Why Use This Option
Use this option to define a selection of coding standard checkers specific to your organization. The

configuration of different coding standards is consolidated in a single XML file that you can reuse
across projects to enforce common coding standards.

2-136

Set checkers by file (-checkers-selection-file)

Settings

41 0n
Polyspace checks your code against the selection of coding standard checkers, or the custom
rules, defined in the configuration file that you specify.

To create a configuration file by using the Polyspace Desktop, in the Configuration, select
Coding Standards & Code Metrics. To open the Checkers selection interface, click the folder

('—_1) on the right pane. Choose the coding standards that you want to configure in the left pane,
and then select the rules that you want to activate in the right pane.

To create a configuration file by using Polyspace As you Code IDE plugins, refer to the
documentation of your specific plugin.

To use or update an existing file, enter the full path to the file in the in the Select file field of the
Checkers selection dialog box. Alternatively, click Browse in the Checkers selection window
and browse to the existing file.

2-137

2 Analysis Options

MISRA C:2004

Select file

SVISRA C:2004 (132/132) Select rules in category: [/] Al [] required [] 2
-1 Environment

Status Category Mame
- [] 1 Environment

2 Language extensions

3 Documentation

-2 Language extensions
-3 Documentation
-4 Character sets

-5 Identifiers
-6 Types 4 Character sets
-7 Constants 5 Identifiers

& Types

7 Constants

8 Dedarations and definitions
9 Initialization

10 Arithmetic type conversions

--8 Dedarations and definitions

-8 Initialization

--10 Arithmetic type conversions
--11 Pointer type conversions

-+ 12 Expressions

--13 Control statement expressions 11 Pointer type conversions
--14 Control flow

- 15 Switch statements

-~ 16 Functions

12 Expressions

13 Control statement expressions
14 Control flow

15 Switch statements

- [+] 16 Functions

17 Pointers and arrays

18 Structures and unions

17 Pointers and arrays
--18 Structures and unions
--19 Preprocessing directives
- 20 Standard libraries

--21 Run-time failures
H-MISRA AC AGC {130/130)
H-MISRA C:2012 (173/173)
F-MISRA C+4:2008 (211/211)
H-15F AY C++ (160/150)
H-SEI CERT C (204/204)

H-5EI CERT C++ (134/134)

----- ISOfIEC TS 17961 (46/45)
H-AUTOSAR C++14 (327/327)
[+-Paolyspace Guidelines ({18/18)
[-Custom {43/43)

19 Preprocessing directives
20 Standard libraries
<[] 21 Run-time failures

| oy N O oy O oy Oy A e

"] Off (default)

Polyspace does not check your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

2-138

Set checkers by file (-checkers-selection-file)

Tips

» For the Polyspace desktop products, specify the coding standard configuration in the Polyspace
User Interface. When you save the configuration, an XML file is created for use in the current and
other projects.

» For the Polyspace Server products, you have to create a coding standard XML. Depending on the
standard that you want to enable, make a writeable copy of one of the files in
polyspaceserverroot\help\toolbox\polyspace bug finder server\examples
\coding standards XML. Turn off rules by using entries in the XML file (all rules from a
standard are enabled in the template). Here, polyspaceserverroot is the root installation
folder for the Polyspace Server products, for instance, C:\Program Files\Polyspace Server
\R2019a.

For instance, to turn off MISRA C:2012 rule 8.1, in the file misra ¢ 2012 rules.xml, use this
entry:

<standard name="MISRA (C:2012">
;ééction name="8 Declarations and definitions">
<check id="8.1" state="off">
</check>
</seé’.cion>
</é’.ca.mdard>
For a full list of rule IDs and section names, see:

* “AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations”
¢ “CERT C++ Rules”

* “ISO/IEC TS 17961 Rules”

* “Custom Coding Rules”

* “JSF C++ Rules”

* “MISRA C:2004 Rules”

* “MISRA C:2012 Directives and Rules”
* “MISRA C++:2008 Rules”

* “Guidelines”

Note The XML format of the checker configuration file might change in future releases.

Command-Line Information

Parameter: -checkers-selection-file

Value: Full path of XML configuration file

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -checkers-
selection-file "C:\Standards\custom config.xml" -misra3 from-file

2-139

2 Analysis Options

Example (Code Prover): polyspace-code-prover -sources file name -checkers-
selection-file "C:\Standards\custom config.xml" -misra3 from-file

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
checkers-selection-file "C:\Standards\custom config.xml" -misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
checkers-selection-file "C:\Standards\custom config.xml" -misra3 from-file

Version History

To be removed from Code Prover
Warns starting in R2022a

If you use the option -checkers-selection-file in a Code Prover analysis, Polyspace issues a
warning. The workflow for checking coding rule violation will be removed from Code Prover in a
future release. To check for coding rule violations, use Bug Finder. For instance, at the command line,
replace this command:

polyspace-code-prover -sources file -checkers-selection-file XML -misra3 from-file
with this command:

#D0S Commands
polyspace-bug-finder -sources file -checkers-selection-file *
XML -misra3 from-file

#Linux Commands
polyspace-bug-finder -sources file -checkers-selection-file \
XML -misra3 from-file

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -misra-ac-agc-checkers-selection-file in a Code Prover analysis is not
recommended. To check for coding rule violations, use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-140

Check MISRA C:2004 (-misra?2)

Check MISRA C:2004 (-misra2)

(To be removed) Check for violation of MISRA C:2004 rules

Note Using Code Prover to check for violation of MISRA C®:2004 rules is not recommended. Use
Check MISRA C:2004 (-misra2) in Bug Finder instead. For more information, see “Compatibility
Considerations”.

Description

Specify whether to check for violation of MISRA C:2004 rules. Each value of the option corresponds
to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-142 for other options that you
must also enable.

Command line and options file: Use the option -misra2. See “Command-Line Information” on
page 2-142.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

2-141

2 Analysis Options

2-142

SQ0-subsetl

Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C:2004)”.

SQ0-subset?2

Check a subset of rules including SQO0-subsetl and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.
Edit

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Checkers selection window. Save
the file.

To use or update an existing configuration file, in the Checkers selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
» This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only . c files.

» Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding rule checker
and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQ0-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQ0-subset?2. Fix your code to address the violations and
rerun verification.

» Ifyou select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information

Parameter: -misra2

Value: required-rules |all-rules | SQO-subsetl | SQO-subset2 | single-unit-rules |
system-decidable-rules | from-file

Example (Bug Finder): polyspace-bug-finder -sources file name -misra2 all-rules

Check MISRA C:2004 (-misra?2)

Example (Code Prover): polyspace-code-prover -sources file name -misra2 all-
rules

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
misra2 all-rules

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
misra2 all-rules

Version History

Use of text format for coding rules file not supported
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. Using a text file for this purpose results in an error. You can save custom selections for all the
coding standards that Polyspace supports in the same file.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click 1 In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar. conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra2 results in an error.
To select a custom selection of MISRA C:2004 rules, use an XML file.

Use the file misra c 2004 rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding standards XML . Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2022b. To update your script, see this table

Option Use Instead

-misra2 "custom standard.conf" -checkers-selection-file
misra_c 2004 rules.xml -misra2 from-
file

See:

* “Configure Coding Rules Checking”
» “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

2-143

2 Analysis Options

2-144

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
<section name="8 Declarations and definitions">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* “AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations’
* “CERT C++ Rules”

+ “ISO/IEC TS 17961 Rules”

* “Custom Coding Rules”

* “JSF C++ Rules”

» “MISRA C:2004 Rules”

» “MISRA C:2012 Directives and Rules”
+ “MISRA C++:2008 Rules”

* “Guidelines”

J

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option -misra2 in a Code Prover analysis, Polyspace issues a warning. The workflow
for checking coding rule violation will be removed from Code Prover in a future release. To check for
coding rule violations, use Bug Finder. For instance, at the command line, replace this command:

polyspace-code-prover -sources file name -misra2 all
with this command:
polyspace-bug-finder -sources file name -misra2 all

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

Option to be removed from Code Prover
Not recommended starting in R2021b

Check MISRA C:2004 (-misra?2)

Using -misra2 in a Code Prover analysis is not recommended. To check for coding rule violations,
use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C:2004 Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-145

2 Analysis Options

2-146

Check MISRA AC AGC (-misra-ac-agc)

(To be removed) Check for violation of MISRA AC AGC rules

Note Using Code Prover to check for violation of MISRA AC AGC rules is not recommended. Use
Check MISRA AC AGC (-misra-ac-agc) in Bug Finder instead. For more information, see
“Compatibility Considerations”.

Description

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-147 for other options that you
must also enable.

Command line and options file: Use the option -misra-ac-agc. See “Command-Line
Information” on page 2-147.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier relevant to the
violation.

Settings
Default: OBL-rules

OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.
single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.

Check MISRA AC AGC (-misra-ac-agc)

These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.
SQ0-subsetl

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce the number
of unproven results. For more information, see “Software Quality Objective Subsets (AC AGC)”.

SQO0-subset?2

Check a subset of rules including SQ0-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (AC AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.
To create a configuration file, click Edit , then select the rules and recommendations you want

to check for this coding standard from the right pane of the Checkers selection window. Save
the file.

To use or update an existing configuration file, in the Checkers selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
» This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes only . c files.

+ Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding rule checker
and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQ0-subsetl. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO0-subset?2. Fix your code to address the violations and
rerun verification.

* Ifyou select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc

2-147

2 Analysis Options

2-148

Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-rules |all-
rules | SQ0-subsetl | SQ0-subset2 | from-file

Example (Bug Finder): polyspace-bug-finder -sources file name -misra-ac-agc all-
rules

Example (Code Prover): polyspace-code-prover -sources file name -misra-ac-agc
all-rules

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
misra-ac-agc all-rules

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
misra-ac-agc all-rules

Version History

Using text format for coding rules file not supported
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. Use of a text file for this porpose results in an error. You can save custom selections for all the
coding standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace no longer supports custom coding standard files in text format.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click 1 In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra-ac-agc results in
an error. To select a custom selection of MISRA AC AGC rules, use an XML file.

Use the file misra ac _agc rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding standards XML. Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2022b. To update your script, see this table

Option Use Instead

-misra-ac-agc "custom standard.conf" -checkers-selection-file
misra ac_agc rules.xml -misra-ac-agc
from-file

Check MISRA AC AGC (-misra-ac-agc)

See:

* “Configure Coding Rules Checking”
» “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
<section name="8 Declarations and definitions">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* "AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations”
* “CERT C++ Rules”

* “ISO/IEC TS 17961 Rules”

¢ “Custom Coding Rules”

* “JSF C++ Rules”

+ “MISRA C:2004 Rules”

+ “MISRA C:2012 Directives and Rules”
+ “MISRA C++:2008 Rules”

* “Guidelines”

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option -misra-ac-agc in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking coding rule violation will be removed from Code Prover in a future release. To
check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources file name -misra-ac-agc all

2-149

2 Analysis Options

2-150

with this command:
polyspace-bug-finder -sources file name -misra-ac-agc all

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -misra-ac-agc in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C:2004 Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

Check MISRA C:2012 (-misra3)

Check MISRA C:2012 (-misra3)

(To be removed) Check for violations of MISRA C:2012 rules and directives

Note Using Code Prover to check for violation of MISRA C®:2012 rules is not recommended. Use
Check MISRA C:2012 (-misra3) in Bug Finder instead. For more information, see “Compatibility
Considerations”.

Description

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the option
corresponds to a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-152 for other options that you
must also enable.

Command line and options file: Use the option -misra3. See “Command-Line Information” on
page 2-153.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier relevant to the
violation.

Settings

Default: mandatory-required

mandatory
Check for mandatory guidelines.
mandatory-required

Check for mandatory and required guidelines.

* Mandatory guidelines: Your code must comply with these guidelines.

* Required guidelines: You may deviate from these guidelines. However, you must complete a
formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation record, see
Appendix I of the MISRA C:2012 guidelines.

2-151

2 Analysis Options

2-152

Note To turn off some required guidelines, instead of mandatory- required select custom. To
clear specific guidelines, click Edit . In the Comment column, enter your rationale for
disabling a guideline. For instance, you can enter the Deviation ID that refers to a deviation
record for the guideline. The rationale appears in your generated report.

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.
SQ0-subsetl

Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality Objective Subsets
(C:2012)".

SQ0-subset?2

Check for the subset SQ0-subsetl, plus some additional rules. In Polyspace Code Prover,
observing these rules can further reduce the number of unproven results. For more information,
see “Software Quality Objective Subsets (C:2012)".

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.
Edit

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Checkers selection window. Save
the file.

To use or update an existing configuration file, in the Checkers selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
» This option is available only if you set Source code language (-lang) to Cor C-CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only . c files.

» Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding rule checker
and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Check MISRA C:2012 (-misra3)

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO0- subsetl. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO0- subset?2. Fix your code to address the violations and
rerun verification.

» If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

* Polyspace Code Prover does not support checking of the following:

 MISRA C:2012 Directive 4.13 and 4.14
+ MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
e MISRA C:2012 Rule 22.1 -22.4 and 22.6 - 22.10

For support of all MISRA C:2012 rules including the security guidelines in Amendment 1, use
Polyspace Bug Finder.

* In code generated by using Embedded Coder®, there are known deviations from MISRA C:2012.
See “Deviations Rationale for MISRA C:2012 Compliance” (Embedded Coder).

Command-Line Information

Parameter: -misra3

Value: mandatory | mandatory-required | single-unit-rules | system-decidable-rules |
all|SQO-subsetl|SQO0-subset2 | from-file

Example (Bug Finder): polyspace-bug-finder -lang c -sources file name -misra3
mandatory-required

Example (Code Prover): polyspace-code-prover -lang ¢ -sources file name -misra3
mandatory-required

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources

file name -misra3 mandatory-required

Example (Code Prover Server): polyspace-code-prover-server -lang c -sources

file name -misra3 mandatory-required

Version History

Using text format for coding rules file not supported
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. Using a text formal file for this purpose results in an error.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

2-153

2 Analysis Options

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click _—_'I In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar. conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra3 results in an error.
To select a custom selection of MISRA C:2012 rules and directives, use an XML file.

Use the file misra c 2012 rules.xml as a template to create the XML file where you define the
custom selection. This template file is located in polyspaceroot\help\toolbox\bugfinder
\examples\coding standards XML. Here, polyspaceroot is the root installation folder for the
Polyspace products, for instance, C:\Program Files\Polyspace\R2022b. To update your script,
see this table

Option Use Instead

-misra3 "custom standard.conf" -checkers-selection-file
misra ¢ 2012 rules.xml -misra3 from-
file

See:

* “Configure Coding Rules Checking”
» “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry in the XML file:

<standard name="MISRA C:2012">
<section name="8 Declarations and definitions">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* "“AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations”
* “CERT C++ Rules”

+ “ISO/IEC TS 17961 Rules”

2-154

Check MISRA C:2012 (-misra3)

* “Custom Coding Rules”

* “JSF C++ Rules”

+ “MISRA C:2004 Rules”

» “MISRA C:2012 Directives and Rules”
+ “MISRA C++:2008 Rules”

* “Guidelines”

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option -misra3 in a Code Prover analysis, Polyspace issues a warning. The workflow
for checking coding rule violation will be removed from Code Prover in a future release. To check for
coding rule violations, use Bug Finder. For instance, at the command line, replace this command:

polyspace-code-prover -sources file name -misra3 all
with this command:
polyspace-bug-finder -sources file name -misra3 all

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

Option to be removed from Code Prover
Not recommended starting in R2021b

Using -misra3 in a Code Prover analysis is not recommended. To check for coding rule violations,
use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C:2012 Directives and Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-155

2 Analysis Options

2-156

Use generated code requirements (-misra3-agc-
mode)

(To be removed) Check for violations of MISRA C:2012 rules and directives that apply to generated
code

Note Using Code Prover to check for violations of MISRA C®:2012 rules and directives that apply to
generated code is not recommended. Use Use generated code requirements (-misra3-agc-
mode) in Bug Finder instead. For more information, see “Compatibility Considerations”.

Description

Specify whether to use the MISRA C:2012 categories for automatically generated code. This option
changes which rules are mandatory, required, or advisory.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-157 for other options that you must
also enable.

Command line and options file: Use the option -misra3-agc-mode. See “Command-Line
Information” on page 2-157.

Why Use This Option
Use this option to specify that you are checking for MISRA C:2012 rules in generated code. The
option modifies the MISRA C:2012 subsets so that they are tailored for generated code.

Settings

Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding guideline
checking.

¥ On (default for analyses from Simulink)

Use the generated code categories (mandatory, required, advisory, readability) for MISRA C:2012
coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.
Category changed to Advisory

These rules are changed to advisory:

+ 5.3

Use generated code requirements (-misra3-agc-mode)

« 7.1

+ 84,8.5,8.14

+ 10.1,10.2,10.3, 10.4, 10.6, 10.7, 10.8
« 141,144

+ 15.2,15.3

+ 16.1,16.2, 16.3, 16.4, 16.5, 16.6, 16.7
+ 20.8

Category changed to Readability

These guidelines are changed to readability:

« Dir4.5

* 2.3,24,25,26,2.7
+ 5.9

e 72,73

* 92,9395

« 11.9

+ 133

+ 142

+ 15.7

+ 175,17.7,17.8
+ 185

+ 205

Dependency

To use this option, activate at least one MISRA C:2012 rule. To activate MISRA C:2012 rules, use
either of these:

* Use the option Check MISRA C:2012 (-misra3) to activate a preselected subset of the rules.

» Use the option Set checkers by file (-checkers-selection-file) alongside Check
MISRA (C:2012 (-misra3) to activate a custom selection that is specified in an XML file.

When using an XML file to specify a custom selection, select at least one MISRA C:2012 rule in the
file.

Command-Line Information

Parameter: -misra3-agc-mode

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -misra3 all -
misra3-agc-mode

Example (Code Prover): polyspace-code-prover -sources file name -misra3 all -
misra3-agc-mode

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
misra3 all -misra3-agc-mode

2-157

2 Analysis Options

2-158

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
misra3 all -misra3-agc-mode

Version History

To be removed from Code Prover
Warns starting in R2022a

If you use the option -misra3-agc-mode in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking coding rule violation will be removed from Code Prover in a future release. To
check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources file name -misra3 all -misra3-agc-mode
with this command:
polyspace-bug-finder -sources file name -misra3 all -misra3-agc-mode

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -misra3-agc-mode in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for) |Check MISRA C:2012
(-misra3)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C:2012 Directives and Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

Check custom rules (-custom-rules)

Check custom rules (-custom-rules)

(To be removed) Follow naming conventions for identifiers

Note Using Code Prover to follow naming conventions is not recommended. Use Check custom
rules (-custom-rules) in Bug Finder instead. For more information, see “Compatibility
Considerations”.

Description
Define naming conventions for identifiers and check your code against them.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -custom-rules. See “Command-Line
Information” on page 2-161.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention allows you to
easily determine the nature of an identifier from its name. For instance, if you define a naming
convention for structures, you can easily tell whether an identifier represents a structured variable or
not.

After analysis, the Results List pane lists violations of the naming conventions. On the Source pane,
for every violation, Polyspace assigns a * symbol to the keyword or identifier relevant to the
violation.

For the full list of types on which you can apply naming conventions, see “Custom Coding Rules”.

Settings

+| On

Polyspace matches identifiers in your code against text patterns you define. Define the text
patterns in a custom coding rules file. To create a coding rules file,

* Use the custom rules wizard:

1 i
Click Edit . A Checkers selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the right pane to
select custom rule you want to check.

3 For every custom rule you want to check:

2-159

2 Analysis Options

2-160

Select On [,

In the Convention column, enter the error message you want to display if the rule is
violated.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter ALl struct fields must begin with s . This message appears on
the Result Details pane if:

* You specify the Pattern as s [A-Za-z0-9]+

* A structure field in your code does not begin with s _.

In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified pattern, you

canenter s [A-Za-z0-9]+. Polyspace reports violation of rule 4.3 if a structure
field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you can use the
following expressions.

Expression Meaning

. Matches any single character except newline

[a-20-9] Matches any single letter in the set a-z, or digit in
the set 0-9

[ra-e] Matches any single letter not in the set a-e

\d Matches any single digit

\w Matches any single alphanumeric character or

X? Matches 0 or 1 occurrence of x

x* Matches 0 or more occurrences of x

X+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

* (?!)[a-z0-9]+(?!), matches a text pattern that does not start and end
with two underscores.

int _ text; //Does not match
int _text_; //Matches

* [a-z0-9]+ (u8|ul6|u32|s8|sl6|s32) , matches a text pattern that ends
with a specific suffix.

int text ; //Does not match
int text s16; //Matches
int _text_s33; // Does not match

* [a-20-9]+ (u8|ulb|u32|s8|sl6|s32)(b3| b8)?, matches a text pattern
that ends with a specific suffix and an optional second suffix.

int text s16; //Matches
int text s16 b8; //Matches

For a complete list of regular expressions, see Perl documentation.

https://perldoc.perl.org/perlre#Regular-Expressions

Check custom rules (-custom-rules)

To use or update an existing coding rules file, click ‘Ed_'t/ to open the Checkers selection
window then do one of the following:

* Enter the full path to the file in the field provided
* Click Browse and navigate to the file location.

Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information

Parameter: -custom-rules

Value: from-file, specify the file using Set checkers by file (-checkers-selection-
file)

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom config.xml"
Example (Code Prover): polyspace-code-prover -sources file name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
custom-rules from-file -checkers-selection-file "C:\Standards

\custom config.xml"

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
custom-rules from-file -checkers-selection-file "C:\Standards

\custom config.xml"

Version History

Use of text format for coding rules file not supported
Errors starting in R2021b

Since R2019a, the file where you define custom coding rules uses the XML format. Using a text file
for this purpose results in an error. You can save selections for custom coding rules and all the coding
standards that Polyspace supports in the same file.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files in text
format, Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the software saves
the consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar. conf, they are saved as bar.conf.xml.

Command-line:

2-161

2 Analysis Options

2-162

In the command-line or in the IDE extensions, using text files as input to -custom-rules results in
an error. To select a custom selection of custom rules, use an XML file.

Use the file custom rules.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\bugfinder\examples\coding standards XML. Here, polyspaceroot is the root installation
folder for the Polyspace products, for instance, C:\Program Files\Polyspace\R2022b. To update
your script, replace reference to the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
<section name="8 Constants">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* "AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations’
* “CERT C++ Rules”

* “ISO/IEC TS 17961 Rules”

* “Custom Coding Rules”

* “JSF C++ Rules”

+ “MISRA C:2004 Rules”

+ “MISRA C:2012 Directives and Rules”
+ “MISRA C++:2008 Rules”

* “Guidelines”

1

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option -custom-rules in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking compliance with naming conventions will be removed from Code Prover in a
future release. To check for compliance with naming conventions, use Bug Finder. For instance, at the
command line, replace this command:

Check custom rules (-custom-rules)

polyspace-code-prover -sources file name”
-custom-rules from-file -checkers-selection-file”
"C:\Standards\custom config.xml"

with this command:

#D0S Commands

polyspace-bug-finder -sources file name”
-custom-rules from-file -checkers-selection-file *
"C:\Standards\custom config.xml"

#Linux Commands

polyspace-bug-finder -sources file name\
-custom-rules from-file -checkers-selection-file \
"C:\Standards\custom config.xml"

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

Option to be removed from Code Prover
Not recommended starting in R2021b

Using -custom-rules in a Code Prover analysis is not recommended. For this purpose, use Bug
Finder instead.

See Also

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“Create Custom Coding Rules”

“Custom Coding Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-163

2 Analysis Options

Effective boolean types (-boolean-types)

(To be removed) Specify data types that coding rule checker must treat as effectively Boolean

Note This option applies only to coding rules, which will be removed from Code Prover in a future
version. Use Effective boolean types (-boolean-types) in Bug Finder instead. For more
information, see “Compatibility Considerations”.

Description

Specify data types that the coding rule checker must treat as effectively Boolean. You can specify a
data type as effectively Boolean only if you have defined it through an enum or typedef statement in
your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-165 for other options that you
must also enable.

Command line and options file: Use the option -boolean-types. See “Command-Line
Information” on page 2-165.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

» MISRA C: 2004 and MISRA AC AGC

Rule Rule Statement

Number

12.6 Operands of logical operators, &&, | |, and !, should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to other
operators.

13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.

154 A switch expression should not represent a value that is effectively Boolean.

* MISRA C: 2012

Rule Rule Statement

Number

10.1 Operands shall not be of an inappropriate essential type

10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category

2-164

Effective boolean types (-boolean-types)

Rule Rule Statement

Number

10.5 The value of an expression should not be cast to an inappropriate essential type

14.4 The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean, Polyspace
detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void funcl(void);
void func2(void);

void func(myBool flag) {
if(flag)
funcl();
else
func2();

Settings

No Default
Click E::Il:' to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies

This option is enabled only if you select one of these options:

e Check MISRA C:2004 (-misra2)
* Check MISRA AC AGC (-misra-ac-agc).
* Check MISRA (C:2012 (-misra3)

Command-Line Information

Parameter: -boolean-types

Value: typell, type2[,...11]

No Default

Example (Bug Finder): polyspace-bug-finder -sources filename -misra2 required-
rules -boolean-types booleanl t,boolean2 t

Example (Code Prover): polyspace-code-prover -sources filename -misra2 required-
rules -boolean-types booleanl t,boolean2 t

Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra2 required-rules -boolean-types booleanl t,boolean2 t
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra2 required-rules -boolean-types booleanl t,boolean2 t

2-165

2 Analysis Options

2-166

Version History

To be removed from Code Prover
Warns starting in R2022a

If you use the option -boolean-types in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking coding rule violation will be removed from Code Prover in a future release. To
check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources SRC -misra3 all -boolean-types booleanl t
with this command:
polyspace-bug-finder -sources SRC -misra3 all -boolean-types booleanl t

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -boolean-types in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also

Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check MISRA
C:2012 (-misra3)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C:2004 Rules”

“MISRA C:2012 Directives and Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

Allowed pragmas (-allowed-pragmas)

Allowed pragmas (-allowed-pragmas)

(Not recommended) Specify pragma directives that are documented

Note This option applies only to coding rules, which will be removed from Code Prover in a future
version. Use Allowed pragmas (-allowed-pragmas) in Bug Finder instead. For more
information, see “Compatibility Considerations”.

Description

Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA C++ rule
16-6-1. These rules require that you document all pragma directives.

Set Option
User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. For other options that you must also enable, see “Dependencies”

on page 2-167.

Command line and options file: Use the option -allowed-pragmas. See “Command-Line
Information” on page 2-168.

Why Use This Option
MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all pragma
directives are documented within the documentation of the compiler. If you list a pragma as

documented by using this analysis option, Polyspace does not flag use of the pragma as a violation of
these rules.

Settings

No Default

To add a field, click I:Il:ll:I Enter the pragma name that you want Polyspace to ignore during coding rule
checking .

Dependencies

This option is enabled only if you select one of these options:

* Check MISRA (C:2004 (-misra2)
* Check MISRA AC AGC (-misra-ac-agc).
* Check MISRA C++:2008 (-misra-cpp)

2-167

2 Analysis Options

2-168

Tips

Enter only the name of the pragma excluding any argument. For instance, if you use the pragma
pack:

#pragma pack(n)

Enter only the name pack for this option.

Command-Line Information

Parameter: -allowed-pragmas

Value: pragmall,pragma2(,...]]

Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma 01,pragma 02

Example (Code Prover): polyspace-code-prover -sources filename -misra-cpp
required-rules -allowed-pragmas pragma 01,pragma 02

Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma 01,pragma 02
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma 01,pragma 02

Version History

To be removed from Code Prover
Warns starting in R2022a

If you use the option -allowed-pragmas in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking coding rule violation will be removed from Code Prover in a future release. To
check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources SRC -misra-cpp all-rules -allowed-pragmas pragma 01
with this command:
polyspace-bug-finder -sources SRC -misra-cpp all-rules -allowed-pragmas pragma 01

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -allowed-pragma in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also
Check MISRA (C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check MISRA
C++:2008 (-misra-cpp)

Topics
“Specify Polyspace Analysis Options”

Allowed pragmas (-allowed-pragmas)

“Check for Coding Standard Violations”

“MISRA C:2004 Rules”

“MISRA C++:2008 Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-169

2 Analysis Options

Calculate code metrics (-code-metrics)

(To be removed) Compute and display code complexity metrics

Note Using Code Prover to compute code metrics is not recommended. Use Calculate code
metrics (-code-metrics) in Bug Finder instead. For more information, see “Compatibility
Considerations”.

Description

Specify that Polyspace must compute and display code complexity metrics for your source code. The
metrics include file metrics such as number of lines and function metrics such as cyclomatic
complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics Using Polyspace”.

To maintain an acceptable level of software complexity during the development cycle, use the
software complexity checkers. See “Reduce Software Complexity by Using Polyspace Checkers”.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -code-metrics. See “Command-Line
Information” on page 2-171.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these metrics in your
analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of coding
errors. Additionally, if you run a Code Prover verification on your source code, you might benefit from
checking your code complexity metrics first. If a function is too complex, attempts to verify the
function can lead to a lot of unproven code. For information on how to cap your code complexity
metrics, see “Compute Code Complexity Metrics Using Polyspace”.

Settings

“| On

Polyspace computes and displays code complexity metrics on the Results List pane.

Off (default)
Polyspace does not compute complexity metrics.

2-170

Calculate code metrics (-code-metrics)

Tips
If you want to compute only the code complexity metrics for your code:

* In Bug Finder, disable checking of defects. See Find defects (-checkers).

* In Code Prover, run verification up to the Source Compliance Checking phase. See
Verification level (-to).

A Code Prover analysis computes the stack usage metrics after the source compliance checking
phase. If you stop a Code Prover verification before source compliance checking, the stack usage
metrics are not reported.

Command-Line Information

Parameter: -code-metrics

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -code-metrics
Example (Code Prover): polyspace-code-prover -sources file name -code-metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
code-metrics

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
code-metrics

Version History

To be removed from Code Prover
Warns starting in R2022a

If you use the option -code-metrics in a Code Prover analysis, Polyspace issues a warning. The
workflow for computing code metrics will be removed from Code Prover in a future release. To
compute code metrics other than stack usage, use Bug Finder. For instance, at the command line,
replace this command:

polyspace-code-prover -sources file name -misra-cpp all-rules
with this command:
polyspace-bug-finder -sources file name -misra-cpp all-rules

To compute stack usage metrics, use the option Calculate stack usage (-stack-usage). See
“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”.

To be removed from Code Prover
Not recommended starting in R2021b

Using -code-metrics in a Code Prover analysis is not recommended. To check for code metrics, use
Bug Finder.

See Also
Topics

“Compute Code Complexity Metrics Using Polyspace”
“Code Metrics”

2-171

2 Analysis Options

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-172

Check MISRA C++:2008 (-misra-cpp)

Check MISRA C++:2008 (-misra-cpp)

(To be removed) Check for violations of MISRA C++ rules

Note Using Code Prover to check for violation of MISRA® C++ rules is not recommended. Use
Check MISRA C++:2008 (-misra-cpp) in Bug Finder instead. For more information, see
“Compatibility Considerations”.

Description

Specify whether to check for violation of MISRA C++ rules. Each value of the option corresponds to a
subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-174 for other options that you must
also enable.

Command line and options file: Use the option -misra-cpp. See “Command-Line Information” on
page 2-174.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQ0-subsetl

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C++)”.

SQ0-subset?2

Check a subset of rules including SQ0-subsetl and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C++)”

2-173

2 Analysis Options

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.
Edit

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Checkers selection window. Save
the file.

To use or update an existing configuration file, in the Checkers selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only . cpp files.

Command-Line Information

Parameter: -misra-cpp

Value: required-rules |all-rules | SQO-subsetl | SQO-subset2 | from-file

Example (Bug Finder): polyspace-bug-finder -sources file name -misra-cpp all-
rules

Example (Code Prover): polyspace-code-prover -sources file name -misra-cpp all-
rules

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
misra-cpp all-rules

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
misra-cpp all-rules

Version History

Use of text format for coding rules file not supported
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. Use of text format for this purpose results in an error. You can save custom selections for all
the coding standards that Polyspace supports in the same file.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click 1 In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as

2-174

Check MISRA C++:2008 (-misra-cpp)

filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar. conf, they are saved as bar.conf.xml.

Command-line:

In the command-line or in the IDE extensions, using text files as input to -misra-cpp results in an
error. To select a custom selection of MISRA C++:2008 rules, use an XML file.

Use the file misra cpp 2008 rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding standards XML. Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2022b. To update your script, see this table

Option Use Instead

-misra-cpp "custom standard.conf" -checkers-selection-file
misra cpp 2008 rules.xml -misra-cpp
from-file

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
<section name="8 Declarations and definitions">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* "AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations”
* “CERT C++ Rules”

+ “ISO/IEC TS 17961 Rules”

* “Custom Coding Rules”

* “JSF C++ Rules”

+ “MISRA C:2004 Rules”

« “MISRA C:2012 Directives and Rules”
* “MISRA C++:2008 Rules”

2-175

2 Analysis Options

e “Guidelines”

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option -misra-cpp in a Code Prover analysis, Polyspace issues a warning. The
workflow for checking coding rule violation will be removed from Code Prover in a future release. To
check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources file name -misra-cpp all-rules
with this command:
polyspace-bug-finder -sources file name -misra-cpp all-rules

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

Option to be removed from Code Prover
Not recommended starting in R2021b

Using -misra-cpp in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“MISRA C++:2008 Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

2-176

Check JSF AV C++ rules (-jsf-coding-rules)

Check JSF AV C++ rules (-jsf-coding-rules)

(To be removed) Check for violations of JSF C++ rules

Note Using Code Prover to check for violations of JSF® C++ rules is not recommended. Use Check
JSF AV C++ rules (-jsf-coding-rules) in Bug Finder instead. For more information, see
“Compatibility Considerations”.

Description

Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-178 for other options that you must
also enable.

Command line and options file: Use the option - jsf-coding-rules. See “Command-Line
Information” on page 2-178.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier relevant to the
violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require verification.
shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory requirements but do not
require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.
from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.
Edit

To create a configuration file, click , then select the rules and recommendations you want

2-177

2 Analysis Options

2-178

to check for this coding standard from the right pane of the Checkers selection window. Save
the file.

To use or update an existing configuration file, in the Checkers selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Tips

» If your project uses a setting other than generic for Compiler (-compiler), some rules might
not be completely checked. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only . cpp files.

Command-Line Information

Parameter: - jsf-coding-rules

Value: shall-rules | shall-will-rules |all-rules | from-file

Example (Bug Finder): polyspace-bug-finder -sources file name -jsf-coding-rules
all-rules

Example (Code Prover): polyspace-code-prover -sources file name -jsf-coding-
rules all-rules

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -jsf-
coding-rules all-rules

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
jsf-coding-rules all-rules

Version History

Using text format for coding rules file will not be supported
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. Use of a text file for this purpose results in an error. You can save custom selections for all the
coding standards that Polyspace supports in the same file.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then

Check JSF AV C++ rules (-jsf-coding-rules)

click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar. conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to - jsf-coding-rules
results in an error. To select a custom selection of JSF C++ rules, use an XML file.

Use the file jsf av_cpp.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\bugfinder\examples\coding standards XML. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2022b. To update your script, see this table

Option Use Instead

-jsf-coding-rules -checkers-selection-file

"custom standard.conf" "custom standard.conf.xml" -jsf-
coding-rules from-file

See:

* “Configure Coding Rules Checking”
» “Setting Checkers in Polyspace as You Code”

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
<section name="8 Declarations and definitions">

<check id="8.1" state="on">
</check>

</section>

</standard>

For a full list of rule IDs and section names, see:

* "AUTOSAR C++14 Rules”

* “CERT C Rules and Recommendations”
* “CERT C++ Rules”

+ “ISO/IEC TS 17961 Rules”

* “Custom Coding Rules”

* “JSF C++ Rules”

¢ “MISRA C:2004 Rules”

» “MISRA C:2012 Directives and Rules”
* “MISRA C++:2008 Rules”

2-179

2 Analysis Options

2-180

e “Guidelines”

Use of text format for coding rules file will not be supported
Warns starting in R2019b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file. If you use a text file, Polyspace issues a warning and converts the text file to XML.

Option to be removed from Code Prover
Warns starting in R2022a

If you use the option - jsf-coding-rules in a Code Prover analysis, Polyspace issues a warning.
The workflow for checking coding rule violation will be removed from Code Prover in a future release.
To check for coding rule violations, use Bug Finder. For instance, at the command line, replace this
command:

polyspace-code-prover -sources file name -jsf-coding-rules all-rules
with this command:
polyspace-bug-finder -sources file name -jsf-coding-rules all-rules

See “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug
Finder”.

Option to be removed from Code Prover
Not recommended starting in R2021b

Using - jsf-coding-rules in a Code Prover analysis is not recommended. To check for coding rule
violations, use Bug Finder.

See Also
Do not generate results for (-do-not-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Standard Violations”

“JSF C++ Rules”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”

Verify whole application

Verify whole application

Stop verification if sources files are incomplete and do not contain a main function

Description

This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace verification must stop if a main function is not present in the source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which function must
be considered as main. See Main entry point (-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: There is no corresponding command-line option. See “Command-
Line Information” on page 2-181.

Settings

2 On
Polyspace verification stops if it does not find a main function in the source files.
Off (default)

Polyspace continues verification even when a main function is not present in the source files. If a
main is not present, it generates a file polyspace main.c that contains a main function.

Tips
If you use this option, your code must contain a main function. Otherwise you see the error:
Error: required main procedure not found

If your code does not contain a main function, use the option Verify module or library (-
main-generator) to generate a main function.

Command-Line Information

Unlike the user interface, by default, a verification from the command line stops if it does not find a
main function in the source files. If you specify the option -main-generator, Polyspace generates a
main if it cannot find one in the source files.

2-181

2 Analysis Options

See Also

Verify module or library (-main-generator) |Show global variable sharing and
usage only (-shared-variables-mode)

Topics

“Specify Polyspace Analysis Options”

“Verify C Application Without main Function”
“Verify C++ Classes”

2-182

Show global variable sharing and usage only (-shared-variables-mode)

Show global variable sharing and usage only (-
shared-variables-mode)

Compute global variable sharing and usage without running full analysis

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify this option to run a less extensive analysis that computes the global variable sharing and
usage in your entire application. The analysis does not verify your code for run-time errors. The
analysis results also include coding standards violations if you enable coding standards checking, and
code metrics if you enable code metrics computation.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -shared-variables-mode. See “Command-Line
Information” on page 2-184.

Why Use This Option

You can see global variable sharing and usage without running a full analysis on your entire
application that includes run-time error detection. Run-time error detection on an entire application
can take a long time.

Settings

¥ On

Polyspace computes global variable sharing and usage but does not verify your code for run-time
erTors.

Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies

* You can use this option only if your program contains a main function and you enable the option
Verify whole application (implicitly set by default at command line).
* When you enable this option, you must also enable at least one of these options.
* Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection)
* Tasks (-entry-points)

2-183

2 Analysis Options

* Cyclic tasks (-cyclic-tasks)

* Interrupts (-interrupts)

* ARXML files selection (-autosar-multitasking)
* OIL files selection (-osek-multitasking)

Tips

+ After you analyze your complete application to see global variable sharing and usage, run a
component-by-component Code Prover analysis to detect run-time errors.

» In the desktop product, you can see all read and write operations on global variables in the
“Variable Access in Polyspace Desktop User Interface” pane.

» In this less extensive analysis mode, the analysis checks for most but not all coding standards
violations, and computes most but not all code metrics.

Command-Line Information

Parameter: -shared-variables-mode

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -shared-
variables-mode -enable-concurrency-detection

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
shared-variables-mode -enable-concurrency-detection

Version History
Introduced in R2019b

See Also

Topics
“Specify Polyspace Analysis Options”

2-184

Verify initialization section of code only (-init-only-mode)

Verify initialization section of code only (-1nit-
only-mode)

Check initialization code alone for run-time errors and other issues

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check only the section of code marked as initialization code for run-time
errors and other issues.

To indicate the end of initialization code, you enter the line
#pragma polyspace end of init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -init-only-mode. See “Command-Line
Information” on page 2-187.

Why Use This Option

Often, issues in the initialization code can invalidate the analysis of the remaining code. You can use
this option to check the initialization code alone and fix the issues, and then disable this option to
verify the remaining program.

For instance, in this example:

#include <limits.h>

int aVar;
const int aConst = INT MAX;
int anotherVar;

int main() {
aVar = aConst + 1;
#pragma polyspace end of init
anotherVar = aVar - 1;
return 0;

}

the overflow in the line aVar = aConst+1 must be fixed first before the value of aVar is used in
subsequent code.

2-185

2 Analysis Options

2-186

Settings

¥| On

Polyspace checks the code from the beginning of main and continues up to the pragma
polyspace end of init.

Off (default)
Polyspace checks the complete application beginning from the main function.

Dependencies

You can use this option and designate a section of code as initialization code only if:

* Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

* Youset Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

* Verify files independently (-unit-by-unit)
* Show global variable sharing and usage only (-shared-variables-mode)

Tips

* Use this option along with the option Check that global variables are initialized
after warm reboot (-check-globals-init) to thoroughly check the initialization code
before checking the remaining program. If you use both options, the verification checks for the
following:

* Definite or possible run-time errors in the initialization code.

* Whether all non-const global variables are initialized along all execution paths through the
initialization code.

* Multitasking options are disabled if you check initialization code only because the initialization of
global variables is expected to happen before the tasks (threads) begin. As a result, task bodies
are not verified.

See also “Multitasking”.
* Ifyou check initialization code only, the analysis truncates execution paths containing the pragma
at the location of the pragma but continues to check other execution paths.

For instance, in this example, the pragma appears in an if block. A red non-initialized variable
check appears on the line int a = var because the path containing the initialization stops at the
location of the pragma. On the only other remaining path that bypasses the if block, the variable
var is not initialized.

int var;

int func();

Verify initialization section of code only (-init-only-mode)

int main() {
int err = func();
if(err) {
var = 0;
#pragma polyspace end of init

int a = var;
return 0;

}

To avoid these situations, try to place the pragma outside a block. See other suggestions for
placement of the pragma in the reference for Check that global variables are
initialized after warm reboot (-check-globals-init).

» To determine the initialization of a structure, a regular Code Prover analysis only considers fields
that are used.

If you check initialization code only using this option, the analysis covers only a portion of the
code and cannot determine if a variable is used beyond this portion. Therefore, the checks for
initialization consider all structure fields, whether used or not.

Command-Line Information

Parameter: -init-only-mode

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -init-only-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
init-only-mode

Version History
Introduced in R2020a

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init) | Global variable not assigned a value in initialization code

Topics

“Specify Polyspace Analysis Options”
“Code Prover Assumptions About Global Variable Initialization” on page 14-15

2-187

2 Analysis Options

Verify module or library (-main-generator)

Generate a main function if source files are modules or libraries that do not contain a main

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source files.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 2-189.

For the analogous option for model generated code, see Verify model generated code (-
main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires a main
function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If a main
exists, the analysis uses the existing main.

Settings

@ On (default)
Polyspace generates a main function if it does not find one in the source files. The generated
main:
1 [Initializes variables specified by Variables to initialize (-main-generator-
writes-variables).

2 Before calling other functions, calls the functions specified by Initialization functions
(-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-main-
generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and Functions
to call within the specified classes (-class-analyzer-calls).

If you do not specify the function and variable options above, the generated main:

+ Initializes all global variables except those declared with keywords const and static.

+ In all possible orders, calls all functions that are not called anywhere in the source files.
Polyspace considers that global variables can be written between two consecutive function

2-188

Verify module or library (-main-generator)

calls. Therefore, in each called function, global variables initially have the full range of values
allowed by their type.

Off
Polyspace stops if a main function is not present in the source files.

Tips

+ Ifamain function is present in your source files, the verification uses that main function,
irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.

* Ifyou use the option Verify whole application (default on the command line), your code
must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use this option to generate a main function.

» Ifyou specify multitasking options, the verification ignores your specifications for main
generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace Multitasking
Analysis Manually”.

Command-Line Information

Parameter: -main-generator

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator

See Also

Verify whole application|Variables to initialize (-main-generator-writes-
variables) | Initialization functions (-functions-called-before-main) |
Functions to call (-main-generator-calls) |Class (-class-analyzer) | Functions
to call within the specified classes (-class-analyzer-calls)

Topics

“Specify Polyspace Analysis Options”

“Verify C Application Without main Function”
“Verify C++ Classes”

2-189

2 Analysis Options

2-190

Main entry point (-main)

Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify the function that you want to use as main. If the function does not exist, the verification stops
with an error message. Use this option to specify Microsoft Visual C++ extensions of main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-190 for other options that you must also
enable.

Command line and options file: Use the option -main. See “Command-Line Information” on page
2-191.

Settings
Default: tmain

_tmain

Use tmain as entry point to your code.
wmain

Use wmain as entry point to your code.
_tWinMain

Use tWinMain as entry point to your code.
wWinMain

Use wWinMain as entry point to your code.
WinMain

Use WinMain as entry point to your code.
D1lMain

Use D11Main as entry point to your code.

Dependencies

This option is enabled only if you:

* Set Source code language (-lang) to CPP.
* Select Verify whole application.

Main entry point (-main)

Command-Line Information

Parameter: -main

Value: tmain|wmain| _ tWinMain |wWinMain | WinMain | DllMain

Example (Code Prover): polyspace-code-prover -sources file name -compiler
visuall4.0 -main _tmain

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
compiler visuall4.0 -main _tmain

See Also
Verify whole application|Verify module or library (-main-generator)

Topics

“Specify Polyspace Analysis Options”

“Verify C Application Without main Function”
“Verify C++ Classes”

2-191

2 Analysis Options

2-192

Variables to initialize (-main-generator-writes-
variables)

Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify global variables that you want the generated main to initialize. Polyspace considers these
variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-193 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 2-193.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

A Code Prover analysis of a module without a main function makes some default assumptions about
global variable initialization. The analysis assumes that global variables that are not explicitly
initialized can have the full range of values allowed by their data types upon each entry into an
uncalled function. For instance, in the example below, which does not have a main function, the
variable glob is assumed to have all possible int values both in foo and bar (despite the
modification in fo0). The assumption is a conservative one since the call context of foo and bar,
including which function gets called earlier, is not known.

int glob;

int foo() {
int locFoo = glob;
glob++;
return locFoo;

}

int bar() {
int locBar = glob;
return locBar;

}

To implement this assumption, the generation main initializes such global variables to full-range
values before calling each otherwise uncalled function. Use this option to modify this default
assumption and implement a different initialization strategy for global variables.

Variables to initialize (-main-generator-writes-variables)

Settings
Default:

* Ccode — public
* C++ Code — uninit
uninit

C++ Only

The generated main only initializes global variables that you have not initialized during
declaration.

none
The generated main does not initialize global variables.

Global variables are initialized according to the C/C+ standard. For instance, int or char
variables are initialized to 0, float variables to 0.0, and so on.

public

The generated main initializes all global variables except those declared with keywords static
and const.

all
The generated main initializes all global variables except those declared with keyword const.
custom

The generated main only initializes global variables that you specify. Click 5.7 to add a field.
Enter a global variable name.

Dependencies

You can use this option only if the following are true:

* Your code does not contain a main function.
* Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of global
variables (-no-def-init-glob). Global variables are considered as uninitialized until you
explicitly initialize them in the code.

Tips

This option only affects global variables that are defined in the project. If a global variable is declared
as extern, the analysis considers that the variable can have any value allowed by its data type,
irrespective of the value of this option.

Command-Line Information

Parameter: -main-generator-writes-variables

Value: uninit | none|public|all|custom=variablel[,variable2[,...]]
Default: (C) public | (C++)uninit

2-193

2 Analysis Options

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-main-generator-writes-variables all

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)
Topics

“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”

2-194

Initialization functions (- functions-called-before-main)

Initialization functions (-functions-called-
before-main)

Specify functions that you want the generated main to call ahead of other functions

Description

This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.
Specify functions that you want the generated main to call ahead of other functions.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-196 for other options that you must also
enable.

Command line and options file: Use the option - functions-called-before-main. See
“Command-Line Information” on page 2-196.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-calls) to specify
which functions the generated main must call. Unless a function is called directly or indirectly from
main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

Click “Lr” to add a field and enter the function name.
Click °a to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify the
function prototype with arguments. For instance, in the following code, you must specify the
prototypes func(int) and func(double).

int func(int x) {
return(x * 2);

}
double func(double x) {

2-195

2 Analysis Options

return(x * 2);

}
For C++, if the function is:

* A class method: The generated main calls the class constructor before calling this function.
* Not a class method: The generated main calls this function before calling class methods.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass: :init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Dependencies

This option is enabled only if you select Verify module or library under Code Prover Verification
and your code does not contain a main function.

Tips

Although these functions are called ahead of other functions, they can be called in arbitrary order. If
you want to call your initialization functions in a specific order, manually write a main function to call
them.

Command-Line Information

Parameter: - functions-called-before-main

Value: functionl[, function2[,...]]

No Default

Example 1 (Code Prover): polyspace-code-prover -sources file name -main-
generator -functions-called-before-main myfunc

Example 2 (Code Prover): polyspace-code-prover -sources file name -main-
generator -functions-called-before-main myClass::init(int)

Example 1 (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -functions-called-before-main myfunc

Example 2 (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -functions-called-before-main myClass::init(int)

See Also

Verify module or library (-main-generator) |Variables to initialize (-main-
generator-writes-variables) | Functions to call (-main-generator-calls) | Class
(-class-analyzer) | Functions to call within the specified classes (-class-
analyzer-calls)

Topics

“Specify Polyspace Analysis Options”

“Verify C Application Without main Function”
“Verify C++ Classes”

2-196

Functions to call (-main-generator-calls)

Functions to call (-main-generator-calls)

Specify functions that you want the generated main to call after the initialization functions

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call. The main calls these functions after the
ones you specify through the option Initialization functions (-functions-called-
before-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-198 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-calls. See “Command-Line
Information” on page 2-198.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-called-
before-main) to specify which functions the generated main must call. Unless a function is called
directly or indirectly from main, the software does not analyze the function.

Settings
Default: unused

none
The generated main does not call any function.
unused

The generated main calls only those functions that are not called in the source code. It does not
call inlined functions.

all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify.

Enter function names or choose from a list.

2-197

2 Analysis Options

2-198

Click “Lr” to add a field and enter the function name.
Click o to list functions in your code. Choose functions from the list.
If you use the scope resolution operator to specify the function from a particular namespace,

enter the fully qualified name, for instance, myClass: :myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass: :myMethod().

Dependencies

This option is available only if you select Verify module or library (-main-generator).

Tips

Select unused when you use Code Prover Verification > Verify files independently.

If you want the generated main to call an inlined function, select custom and specify the name of
the function.

To verify a multitasking application without a main, select none.

The generated main can call the functions in arbitrary order. If you want to call your functions in a
specific order, manually write a main function to call them.

To specify instantiations of templates as arguments, run analysis once with the option argument
all. Search for the template name in the analysis log and use the template name as it appears in
the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>

T GetMax (T a, T b) {
T result;
result = (a>b)? a : b;
return (result);

}

template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax in the
analysis log. You see the function format:

Tl getMax<int>(T1l, T1)

To call only this template instantiation, remove the space between the arguments and use the
option:

-main-generator-calls custom="T1l getMax<int>(T1,T1)"

Command-Line Information

Parameter: -main-generator-calls

Value: none | unused | all | custom=functionl[, function2[,...]]

Default: unused

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-main-generator-calls all

Functions to call (-main-generator-calls)

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -main-generator-calls all

See Also

Verify module or library (-main-generator) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to call
within the specified classes (-class-analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”

2-199

2 Analysis Options

Verify files independently (-unit-by-unit)

Verify each source file independently of other source files

Description

This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that each source file must be verified independently of other source files. Each file is verified
individually, independent of other files in the module. Verification results can be viewed for the entire
project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace desktop
products, you can see a summary of results for all files on the Dashboard pane. You can open the

results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results folder. The
subfolder has the same name as the source file being analyzed.

Set Option
User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-200 for other options that you must also

enable.

Command line and options file: Use the option -unit-by-unit. See “Command-Line
Information” on page 2-201.

Why Use This Option
There are many reasons you might want to verify each source file independently of other files.

For instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

Settings

41 0On
Polyspace creates a separate verification job for each source file.

Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies

This option is enabled only if you select Verify module or library (-main-generator).

2-200

Verify files independently (-unit-by-unit)

Tips

* Code Prover requires a main function as the starting point of verification. In the file-by-file mode,
because most files do not have a main, Code Prover generates a main function when required. By
default, the generated main calls uncalled functions (uncalled non-private methods and out-of-
class functions in C++). For more information, see:

* “Verify C Application Without main Function”
* “Verify C++ Classes”
» If you perform a file by file verification, you cannot specify multitasking options.

» Ifyour verification for the entire project takes very long, perform a file by file verification. After
the verification is complete for a file, you can view the results while other files are still being
verified.

* You can generate a report of the verification results for each file or for all the files together. To
generate a single report for all files, perform the report generation after verification (and not
along with verification using analysis options).

To generate a single report for all the files in the Polyspace user interface (desktop product only):

1 Open the results for one file.

2 Select Reporting > Run Report. Before generating the report, select the option Generate a
single report including all unit results.

If you use the product Polyspace Code Prover Server to run a verification, to generate a single
report for all files:

* Upload the results for all files to the Polyspace Access server.

* Use the polyspace-report-generator command with option -all-units to generate a
single report for all the files.

* When you perform a file-by-file verification, you can see many instances of unused variables. Some
of these variables might be used in other files but show as unused in a file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters out unused
variables. See “Filter and Group Results in Polyspace Desktop User Interface”.

Command-Line Information

Parameter: -unit-by-unit

Default: Off

Example (Code Prover): polyspace-code-prover -sources filel,file2,... -unit-by-
unit

Example (Code Prover Server): polyspace-code-prover-server -sources
filel,file2,... -unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Specify Polyspace Analysis Options”

2-201

2 Analysis Options

Common source files (-unit-by-unit-common-
source)

Specity files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

For a file by file verification, specify files that you want to include with each source file verification.
These files are compiled once, and then linked to each verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-202 for other options that you must also
enable.

Command line and options file: Use the option -unit-by-unit-common-source. See
“Command-Line Information” on page 2-203.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files. For
instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information present in the
other files. Place the missing information in a common file and use this option to specify the file for
verification. For instance, if multiple source files call the same function, use this option to specify a
file that contains the function definition or a function stub. Otherwise, Polyspace uses its own stubs

for functions that are called but not defined in the source files. The assumptions behind the Polyspace
stubs can be broader than what you want, leading to orange checks.

Settings

No Default

Click “Lr” to add a field. Enter the full path to a file. Otherwise, use the ! button to navigate to the
file location.

Dependencies

This option is enabled only if you select Verify files independently (-unit-by-unit).

2-202

Common source files (-unit-by-unit-common-source)

Command-Line Information

Parameter: -unit-by-unit-common-source

Value: filell,file2[,...]1]

No Default

Example (Code Prover): polyspace-code-prover -sources file name -unit-by-unit -
unit-by-unit-common-source definitions.c

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Specify Polyspace Analysis Options”

2-203

2 Analysis Options

Verify model generated code (-main-generator)

Specify that a main function must be generated if it is not present in source files

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify that Polyspace must generate a main function if it does not find one in the source files.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 2-204.

Settings

This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic code that
executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

* [Initializes variables specified by Parameters (-variables-written-before-loop).

» Calls the functions specified by Initialization functions (-functions-called-before-
loop).

The main then performs the following functions in the loop:

» Calls the functions specified by Step functions (-functions-called-in-loop).
* Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-functions-
called-after-loop).

Command-Line Information
Parameter: -main-generator

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -main-
generator ...

Example (Code Prover): polyspace-code-prover -sources file name -main-
generator ...

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator ...

2-204

Verify model generated code (-main-generator)

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator ...

See Also

Verify model generated code (-main-generator) |Parameters (-variables-written-
before-loop) | Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop) | Inputs (-variables-written-in-loop) |
Termination functions (-functions-called-after-1loop)

Topics

“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-205

2 Analysis Options

2-206

Parameters (-variables-written-before-1loop)

Specify variables that the generated main must initialize before the cyclic code loop

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify variables that the generated main must initialize before the cyclic code loop begins. Before
the loop begins, Polyspace considers these variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-before-loop. See
“Command-Line Information” on page 2-206.

Settings
Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword const.
custom

The generated main only initializes variables that you specify. Click 5.7 to add a field. Enter
variable name. For C++ class members, use the syntax className: :variableName.

Command-Line Information

Parameter: -variables-written-before-1loop

Value: none | all | custom=variablel[,variable2[,...]]

Default: none

Example (Bug Finder): polyspace-bug-finder -sources file name -main-generator -
variables-written-before-loop all

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-variables-written-before-loop all

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator -variables-written-before-loop all

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -variables-written-before-loop all

Parameters (-variables-written-before-1loop)

See Also

Verify model generated code (-main-generator) | Inputs (-variables-written-in-
loop)

Topics

“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-207

2 Analysis Options

2-208

Inputs (-variables-written-in-1loop)

Specify variables that the generated main must initialize in the cyclic code loop

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify variables that the generated main must initialize at the beginning of every iteration of the
cyclic code loop. At the beginning of every loop iteration, Polyspace considers these variables to have
any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-in-1loop. See “Command-
Line Information” on page 2-208.

Settings
Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword const.
custom

The generated main only initializes variables that you specify. Click 5.7 to add a field. Enter
variable name. For C++ class members, use the syntax className: : variableName.

Command-Line Information

Parameter: -variables-written-in-loop

Value: none | all | custom=variablel[,variable2[,...]]

Default: none

Example (Bug Finder): polyspace-bug-finder -sources file name -main-generator -
variables-written-in-loop all

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-variables-written-in-loop all

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator -variables-written-in-loop all

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -variables-written-in-loop all

Inputs (-variables-written-in-1loop)

See Also

Verify model generated code (-main-generator) |Parameters (-variables-written-
before-1loop)

Topics

“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-209

2 Analysis Options

2-210

Initialization functions (-functions-called-
before-1loop)

Specify functions that the generated main must call before the cyclic code loop

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify functions that the generated main must call before the cyclic code begins.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option - functions-called-before-loop. See
“Command-Line Information” on page 2-210.

Settings

No Default if you run the analysis outside Simulink. If you run from Simulink, the option uses the
initialize functions from the generated code by default. See also “How Polyspace Analysis of
Generated Code Works”.

Click I:I._II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass: :init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Tips

» Ifyou specify a function for the option Termination functions (-functions-called-
after-1loop), you cannot specify it for this option.

Command-Line Information

Parameter: - functions-called-before-1loop

No Default

Value: functionl[, function2[,...]]

Example (Bug Finder): polyspace-bug-finder -sources file name -main-generator -
functions-called-before-loop myfunc

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-functions-called-before-1loop myfunc

Initialization functions (- functions-called-before-1loop)

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -functions-called-before-loop myfunc

See Also

Verify model generated code (-main-generator) |Step functions (-functions-
called-in-loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-211

2 Analysis Options

2-212

Step functions (-functions-called-in-1loop)

Specify functions that the generated main must call in the cyclic code loop

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify functions that the generated main must call in each cycle of the cyclic code.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option - functions-called-in-1loop. See “Command-
Line Information” on page 2-213.

Settings

Default: none if you run the analysis outside Simulink. If you run from Simulink, the option uses the
step functions from the generated code by default. See also “How Polyspace Analysis of Generated
Code Works”.
none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones. If you specify certain functions for the
options Initialization functions or Termination functions, the generated main does not call
those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click 5.7 to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass: :myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass: :myMethod().

Tips

If you have specified a function for the option Initialization functions (-functions-
called-before-loop) or Termination functions (-functions-called-after-loop),to
call it inside the cyclic code, use custom and specify the function name.

Step functions (- functions-called-in-1loop)

Command-Line Information

Parameter: - functions-called-in-loop

Value: none | all | custom=functionl[, function2[,...]]

Default: none

Example (Bug Finder): polyspace-bug-finder -sources file name -main-generator -
functions-called-in-loop all

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-functions-called-in-loop all

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator -functions-called-in-loop all

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -functions-called-in-loop all

See Also

Verify model generated code (-main-generator) |Initialization functions (-
functions-called-before-loop) | Termination functions (-functions-called-after-
loop)

Topics

“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-213

2 Analysis Options

2-214

Termination functions (-functions-called-
after-1loop)

Specify functions that the generated main must call after the cyclic code loop

Description

This option is automatically set if you run Polyspace from Simulink or MATLAB on generated code. If
you run Polyspace on generated code outside Simulink or MATLAB, set this option manually.

Specify functions that the generated main must call after the cyclic code ends.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option - functions-called-after-loop. See
“Command-Line Information” on page 2-214.

Settings

No Default if you run the analysis outside Simulink. If you run from Simulink, the option uses the
terminate functions from the generated code by default. See also “How Polyspace Analysis of
Generated Code Works”.

Click I:I._II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass: :myMethod(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass: :myMethod().

Tips

» Ifyou specify a function for the option Initialization functions (-functions-called-
before-1loop), you cannot specify it for this option.

Command-Line Information

Parameter: - functions-called-after-loop

No Default

Value: functionl[, function2[,...]]

Example (Bug Finder): polyspace-bug-finder -sources file name -main-generator -
functions-called-after-loop myfunc

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-functions-called-after-loop myfunc

Termination functions (- functions-called-after-loop)

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -functions-called-after-loop myfunc

See Also

Verify model generated code (-main-generator) |Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-loop)

Topics

“Configure Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2-215

2 Analysis Options

2-216

Class (-class-analyzer)

Specify classes that you want to verify

Description

This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-216 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer. See “Command-Line
Information” on page 2-217.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified classes (-
class-analyzer-calls) to specify the class methods that the generated main must call. Unless a
class method is called directly or indirectly from main, the software does not analyze the method.

Settings
Default: all

all

To generate a main function, Polyspace uses all classes that have at least one method defined
outside a header file. The generated main calls methods that you specify using the option
Functions to call within the specified classes (-class-analyzer-calls).

none
The generated main cannot call any class method.
custom

To generate a main function, Polyspace uses classes that you specify. The generated main calls
methods from classes that you specify using the option Functions to call within the
specified classes (-class-analyzer-calls).

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.

Class (-class-analyzer)

* Source code language (-lang) is setto CPP or C-CPP.
* Verify module or library (-main-generator) is selected.

Tips

* Ifyou select none for this option, Polyspace will not verify class methods that you do not call
explicitly in your code.

» Polyspace does not verify templates that are not instantiated. To verify a class template, explicitly
instantiate a class using the template. See “Template Classes”.

Command-Line Information

Parameter: -class-analyzer

Value: all | none | custom=classl[,class2, ...]

Default: all

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-class-analyzer custom=myClassl,myClass2

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -class-analyzer custom=myClassl,myClass2

See Also

Verify module or library (-main-generator) | Functions to call within the
specified classes (-class-analyzer-calls) | Analyze class contents only (-
class-only) | Skip member initialization check (-no-constructors-init-check)

Topics

“Specify Polyspace Analysis Options”
“Verify C++ Classes”

2-217

2 Analysis Options

2-218

Functions to call within the specified classes (-
class-analyzer-calls)

Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify class methods that Polyspace uses to generate a main. The generated main can call static,
public and protected methods in classes that you specify using the Class option.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-219 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 2-219.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods that the
generated main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: unused

all

The generated main calls all public and protected methods. It does not call methods inherited
from a parent class.

all-public

The generated main calls all public methods. It does not call methods inherited from a parent
class.

inherited-all

The generated main calls all public and protected methods including those inherited from a
parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent class.

Functions to call within the specified classes (-class-analyzer-calls)

unused
The generated main calls public and protected methods that are not called in the code.
unused-public

The generated main calls public methods that are not called in the code. It does not call methods
inherited from a parent class.

inherited-unused

The generated main calls public and protected methods that are not called in the code including
those inherited from a parent class.

inherited-unused-public

The generated main calls public methods that are not called in the code including those inherited
from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

Click “L” to add a field and enter the function name.
Click QR to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass: :myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass: :myMethod().

Dependencies

You can use this option only if:

* Source code language (-lang) is setto CPP or C-CPP.
* Verify module or library (-main-generator) is selected.

Command-Line Information

Parameter: -class-analyzer-calls

Value: all | all-public | inherited-all | inherited-all-public | unused | unused-
public | inherited-unused | inherited-unused-public | custom=methodl[,method2, ...]
Default: unused

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-class-analyzer custom=myClassl,myClass2 -class-analyzer-calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -class-analyzer custom=myClassl,myClass2 -class-analyzer-calls
unused-public

See Also
Verify module or library (-main-generator) |Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options”

2-219

2 Analysis Options

“Verify C++ Classes”

2-220

Analyze class contents only (-class-only)

Analyze class contents only (-class-only)

Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace must verify only methods of classes that you specify using the option Class
(-class-analyzer).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-221 for other options that you must also
enable.

Command line and options file: Use the option -class-only. See “Command-Line Information”
on page 2-222.

Why Use This Option
Use this option to restrict the analysis to certain class methods only.
You specify these methods through the options:

* C(Class (-class-analyzer)
* Functions to call within the specified classes (-class-analyzer-calls)

When you analyze a module or library, Code Prover generates a main function if one does not exist.
The main function calls class methods using these two options and functions that are not class
methods using other options. Code Prover analyzes these methods and functions for robustness to all
inputs. If you use this option, Code Prover analyzes the methods only.

Settings

“| On

Polyspace verifies the class methods only. It stubs functions out of class scope even if the
functions are defined in your code.

Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies

You can use this option only if all of the following are true:

2-221

2 Analysis Options

2-222

* Your code does not contain a main function.
* Source code language (-lang) is setto CPP or C-CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-analyzer) option.

Tips
Use this option:

» For robustness verification of class methods. Unless you use this option, Polyspace verifies
methods that you call in your code only for your input combinations.

* In case of scaling.

Command-Line Information

Parameter: -class-only

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-class-analyzer custom=myClassl,myClass2 -class-analyzer-calls unused-public
-class-only

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -class-analyzer custom=myClassl,myClass2 -class-analyzer-calls
unused-public -class-only

See Also
Verify module or library (-main-generator) |Class (-class-analyzer) | Functions
to call within the specified classes (-class-analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes”

Calculate stack usage (-stack-usage)

Calculate stack usage (-stack-usage)

Compute and display the estimates of stack usage

Description
This option applies to Code Prover only.

Specify that Polyspace must estimate and display the stack usage of your source code. The estimates
include:

* Maximum Stack Usage

* Minimum Stack Usage

* Program Maximum Stack Usage

* Program Minimum Stack Usage

* Higher Estimate of Size of Local Variables
* Lower Estimate of Size of Local Variables

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior subnode of the Code Prover Verification node.

’

Command line and options file: Use the option -stack-usage. See “Command-Line Information’
on page 2-171.

Why Use This Option

Estimating the stack usage of your code is necessary because:

* Underestimating the stack usage of your code results in a stack overflow.
* Overestimating the stack usage results in wasted memory.

Obtain the estimated stack usage of your code by using the option -stack-usage to avoid a stack
overflow or wasted memory. This option is especially important for safety critical applications where
the available stack size must accommodate the worst-case stack usage.

Settings

¥ On
Polyspace computes and displays stack usage metrics on the Results List pane.

Off (default)
Polyspace does not compute stack usage metrics.

2-223

2 Analysis Options

2-224

Tips

+ Ifyou want to compute only the stack usage of your code, run verification up to the Source
Compliance Checking phase. See Verification level (-to).

* A Code Prover analysis computes the stack usage metrics after the source compliance checking
phase. If you stop a Code Prover verification before source compliance checking, the stack usage
metrics are not reported.

» This option calculates code metrics that are related to stack usage. Use Bug Finder to calculate
the other code metrics. See Calculate code metrics (-code-metrics).

* Using this option together with - code-metrics option results in an error. The option - code-
metrics will be removed from Code Prover in a future release. To compute the code metrics, use
Bug Finder instead. See “Migrate Code Prover Workflows for Checking Coding Standards and
Code Metrics to Bug Finder”.

Command-Line Information

Parameter: -stack-usage

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -stack-usage
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
stack-usage

Version History
Introduced in R2022a

See Also

Topics

“Compute Code Complexity Metrics Using Polyspace”

“Code Metrics”

“Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder”
“Determination of Program Stack Usage” on page 14-38

Skip member initialization check (-no-constructors-init-check)

Skip member initialization check (-no-
constructors-init-check)

Do not check if class constructor initializes class members

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class members.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-225 for other options that you must also
enable.

Command line and options file: Use the option -no-constructors-init-check. See
“Command-Line Information” on page 2-226.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings

41 0n
Polyspace does not check whether each class constructor initializes all class members.

Off (default)

Polyspace checks whether each class constructor initializes all class members. It uses the
functions check NIV () and check NIP() in the generated main to perform these checks. It
checks for initialization of:

» Integer types such as int, char and enum, both signed or unsigned.
* Floating-point types such as float and double.
» Pointers.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is setto CPP or C-CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-analyzer) option.

2-225

2 Analysis Options

2-226

Command-Line Information

Parameter: -no-constructors-init-check

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -main-generator
-class-analyzer custom=myClassl,myClass2 -class-analyzer-calls unused-public
-no-constructors-init-check

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
main-generator -class-analyzer custom=myClassl,myClass2 -class-analyzer-calls
unused-public -no-constructors-init-check

See Also
Verify module or library (-main-generator) |Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes”

Respect types in fields (- respect-types-in-fields)

Respect types in fields (-respect-types-in-
fields)

Do not cast nonpointer fields of a structure to pointers

Description

This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers later.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option - respect-types-in-fields. See “Command-
Line Information” on page 2-228.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings

+| On

The verification assumes that structure fields not declared initially as pointers will not be cast to
pointers later.

2-227

2 Analysis Options

2-228

Code with option off

Code with option on

struct {
unsigned int x1;
unsigned int x2;
}S;

void funct(void) {

struct {
unsigned int x1;
unsigned int x2;
}S;

void funct(void) {

int var, *tmp; int var, *tmp;

S.x1 = &var; S.x1 = &var;
tmp = (int*)S.x1; tmp = (int*)S.x1;
*tmp = 1; *tmp = 1;
assert(var==1); assert(var==1);

} }

In this example, the fields of S are declared |In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With |as integers but S. x1 is cast to a pointer. With
the option turned off, Polyspace allows the the option turned on, Polyspace ignores the
cast. cast. Therefore, it ignores the initialization of
var through the pointer (int*)S.x1 and
produces a red Non-initialized local
variable error when var is read.

Off (default)

The verification assumes that structure fields can be cast to pointers even when they are not
declared as pointers.

Command-Line Information

Parameter: -respect-types-in-fields

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -respect-types-
in-fields

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
respect-types-in-fields

Version History

To be removed
Warns starting in R2022a

This option will be removed in a future release. The option was originally introduced in Polyspace
Code Prover to detect pathological constructions that increased the pointer analysis time
significantly. Because of precision improvements in pointer analysis, the option is no longer required.

You can still detect the pathological constructions flagged by this option using Polyspace Bug Finder.
For instance, you can use the Bug Finder checker for CERT C: Rule INT36-C to flag conversions
from integer to pointer.

See Also
Respect types in global variables (-respect-types-in-globals) |Non-initialized
local variable

Respect types in fields (- respect-types-in-fields)

Topics
“Specify Polyspace Analysis Options”

2-229

2 Analysis Options

2-230

Respect types in global variables (-respect-
types-in-globals)

Do not cast nonpointer global variables to pointers

Description

This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers later.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option - respect-types-in-globals. See “Command-
Line Information” on page 2-231.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings

+| On

The verification assumes that global variables not declared initially as pointers will not be cast to
pointers later.

Off (default)

The verification assumes that global variables can be cast to pointers even when they are not
declared as pointers.

Tips

If you select this option, the number of checks in your code can change. You can use this option and
the change in results to identify cases where you cast nonpointer variables to pointers.

For instance, in the following example, when you select the option, the results have one less orange
check and one more red check.

Respect types in global variables (- respect-types-in-globals)

Code with option off Code with option on
int global; int global;
void main(void) { void main(void) {
int local; int local;
global = (int)&local; global = (int)&local;
(int)global = 5; *(int*)global = 5;
assert(local==5); assert(local==5);
} }
In this example, global is declared as an int In this example, global is declared as an int
variable but cast to a pointer. With the option variable but cast to a pointer. With the option
turned off, Polyspace allows the cast. turned on, Polyspace ignores the cast. Therefore,
it ignores the initialization of Local through the
pointer (int*)global and produces a red Non-
initialized local variable error when local is
read.
Command-Line Information
Parameter: - respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file name -respect-types-
in-globals

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
respect-types-in-globals

Version History

To be removed
Warns starting in R2022a

This option will be removed in a future release. The option was originally introduced in Polyspace
Code Prover to detect pathological constructions that increased the pointer analysis time
significantly. Because of precision improvements in pointer analysis, the option is no longer required.

You can still detect the pathological constructions flagged by this option using Polyspace Bug Finder.
For instance, you can use the Bug Finder checker for CERT C: Rule INT36-C to flag conversions
from integer to pointer.

See Also
Respect types in fields (-respect-types-in-fields) |Non-initialized local
variable

Topics
“Specify Polyspace Analysis Options”

2-231

2 Analysis Options

2-232

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)

Specify that environment pointers can be unsafe to dereference unless constrained otherwise

Description
This option affects a Code Prover analysis only.
This option is not available for code generated from MATLAB code or Simulink models.

Specify that the verification must consider environment pointers as unsafe unless otherwise
constrained. Environment pointers are pointers that can be assigned values outside your code.

Environment pointers include:

* Global or extern pointers.

* Pointers returned from stubbed functions.
A function is stubbed if your code does not contain the function definition or you override a
function definition by using the option Functions to stub (-functions-to-stub).

» DPointer parameters of functions whose calls are generated by the software.
A function call is generated if you verify a module or library and the module or library does not

have an explicit call to the function. You can also force a function call to be generated with the
option Functions to call (-main-generator-calls).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -stubbed-pointers-are-unsafe. See
“Command-Line Information” on page 2-234.

Why Use This Option

Use this option so that the verification makes more conservative assumptions about pointers from
external sources.

If you specify this option, the verification considers that environment pointers can have a NULL value.
If you read an environment pointer without checking for NULL, the Illegally dereferenced pointer
check shows a potential error in orange. The message associated with the orange check shows the
pointer can be NULL.

Settings

41 0n
The verification considers that environment pointers can have a NULL value.

Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

Off (default)
The verification considers that environment pointers:

e Cannot have a NULL value.
* Points within allowed bounds.

Tips

Enable this option during the integration phase. In this phase, you provide complete code for
verification. Even if an orange check originates from external sources, you are likely to place
protections against unsafe pointers from such sources. For instance, if you obtain a pointer from
an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors originating
from your unit.

If you are verifying code implementation of AUTOSAR runnables, Code Prover assumes that

pointer arguments to runnables and pointers returned from Rte functions are not NULL. You
cannot use this option to change the assumption. See “Run Polyspace on AUTOSAR Code with
Conservative Assumptions”.

If you enable this option, the number of orange checks in your code might increase.

Environment Pointers Safe

Environment Pointers Unsafe

The Illegally dereferenced pointer check is
green. The verification assumes that env_ptr
is not NULL and any dereference is within
allowed bounds. The verification assumes that
the result of the dereference is full range. For
instance, in this case, the return value has the
full range of type int.

int func (int *env_ptr) {
return *env_ptr;
}

The Illegally dereferenced pointer check is
orange. The verification assumes that
env_ptr can be NULL.

int func (int *env_ptr) {
return *env_ptr;
}

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe

Environment Pointers Unsafe

The verification assumes that env_ptr is not
NULL. The if condition is always true and the
else block is unreachable.

#include <stdlib.h>
int func (int *env_ptr) {
if(env_ptr!=NULL)
return *env ptr;
else
return 0;

}

The verification assumes that env_ptr can be
NULL. The if condition is not always true and
the else block can be reachable.

#include <stdlib.h>
int func (int *env_ptr) {
if(env_ptr!=NULL)
return *env_ptr;
else
return 0;

}

Instead of considering all environment pointers as safe or unsafe, you can individually constrain
some of the environment pointers. See the description of Initialize Pointer in “External
Constraints for Polyspace Analysis”.

2-233

2 Analysis Options

2-234

When you individually constrain a pointer, you first specify an Init Mode, and then specify
through the Initialize Pointer option whether the pointer is Null, Not Null, or Maybe Null.
Depending on the Init Mode, you can either override the global specification for all environment
pointers or not.

* Ifyou set the Init Mode of the pointer to INIT or PERMANENT, your selection for Initialize
Pointer overrides your specification for this option. For instance, if you specify Not NULL for
an environment pointer ptr, the verification assumes that ptr is not NULL even if you specify
that environment pointers must be considered unsafe.

+ Ifyou set the Init Mode to MAIN GENERATOR, the verification uses your specification for this
option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not available. If
you override the global specification for such a pointer through the Initialize Pointer option
in constraints, you cannot toggle back to the global specification without changing the
Initialize Pointer option too.

» Ifyou disable this option, the verification considers that dereferences at all pointer depths are
valid.

For instance, all the dereferences are considered valid in this code:
int*** stub(void);

void func2() {
int ***ptr = stub();
int **ptr2 *ptr;
int *ptr3 = *ptr2;

Command-Line Information

Parameter: -stubbed-pointers-are-unsafe

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -stubbed-
pointers-are-unsafe

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
stubbed-pointers-are-unsafe

Version History
Introduced in R2016b

See Also
Constraint setup (-data-range-specifications)

Topics

“Specify Polyspace Analysis Options”

“Specify External Constraints for Polyspace Analysis”
“External Constraints for Polyspace Analysis”

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)

Assume that volatile qualified structure fields can have all possible values at any point in code

Description

This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a structure.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -consider-volatile-qualifier-on-fields.
See “Command-Line Information” on page 2-237.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change between
successive operations even if you do not explicitly change it in your code. For instance, if var is a
volatile variable, the consecutive operations res = var; res =var; can result in two different
values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure fields. If you
select this option, the software assumes that a volatile structure field has a full range of values at
any point in the code. The range is determined only by the data type of the structure field.

Settings

41 0n
The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field vall can have all values
allowed for the int type at any point in the code.

struct myStruct {
volatile int vall;
int val2;

+

Even if you write a specific value to vall and read the variable in the next operation, the variable
read results in any possible value.

struct myStruct myStructInstance;

myStructInstance.vall = 1;
assert (myStructInstance.vall == 1); // Assertion can fail

2-235

2 Analysis Options

2-236

Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field vall.

struct myStruct {
volatile int vall;
int val2;

};

If you write a specific value to vall and read the variable in the next operation, the variable read
results in that specific value.

struct myStruct myStructInstance;
myStructInstance.vall = 1;
assert (myStructInstance.vall == 1); // Assertion passes

Tips

If your volatile fields do not represent values read from hardware and you do not expect their
values to change between successive operations, disable this option. You are using the volatile
qualifier for some other reason and the verification does not need to consider full range for the
field values.

If you enable this option, the number of red, gray, and green checks in your code can decrease.
The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes away when
the option is used. Considering the volatile qualifier changes the check color. These examples
use the following structure definition:

struct myStruct {
volatile int fieldl;

int field?2;
b
Color Result Without Option Result With Option
Without
Option
Green void main(){ void main(){
struct myStruct structVal; struct myStruct structVal;
structVal.fieldl = 1; structVal.fieldl = 1;
assert(structvVal.fieldl == 1); assert(structVal.fieldl ==1);
} }
Red void main(){ void main(){
struct myStruct structVal; struct myStruct structVal;
structVal.fieldl = 1; structVal.fieldl = 1;
assert(structVal.fieldl != 1); assert(structVal.fieldl !=1);
} }

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

Color Result Without Option Result With Option
Without
Option
Gray void main(){ void main(){
struct myStruct structVal; struct myStruct structVal;
structVal.fieldl = 1; structVal.fieldl = 1;
if (structVal.fieldl != 1) if (structVal.fieldl != 1)
{ {
/* Perform operation */ /* Perform operation */
} }
} }

* In C++ code, the option also applies to class members.

Command-Line Information

Parameter: -consider-volatile-qualifier-on-fields

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -consider-
volatile-qualifier-on-fields

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
consider-volatile-qualifier-on-fields

Version History
Introduced in R2016b

See Also

Topics
“Specify Polyspace Analysis Options”

2-237

2 Analysis Options

2-238

Float rounding mode (-float-rounding-mode)

Specify rounding modes to consider when determining the results of floating point arithmetic

Description

This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point arithmetic.
Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option - float-rounding-mode. See “Command-Line
Information” on page 2-240.

Why Use This Option
The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify a rounding
mode other than round-to-nearest. Although the verification ignores the fesetround specification, it
considers all rounding modes including the rounding mode that you specified. Alternatively, for
targets that can use extended precision (for instance, using the flag -mfpmath=387), use the
rounding mode all. However, for your Polyspace analysis results to agree with run-time behavior,
you must prevent use of extended precision through a flag such as - ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding modes are
considered when you specify all, you can have many orange Overflow checks resulting from
overapproximation.

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.
all

The verification assumes all rounding modes for each operation involving floating-point variables.
The following rounding modes are considered: round-to-nearest, round-towards-zero, round-
towards-positive-infinity, and round-towards-negative-infinity.

Tips

» The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754 standard.
For instance, the arithmetic uses floating point instructions present in the SSE instruction set. The
GNU C flag -mfpmath=sse enforces use of this instruction set. If you use the GNU C compiler

https://en.cppreference.com/w/c/numeric/fenv/feround

Float rounding mode (- float-rounding-mode)

with this flag to compile your code, your Polyspace analysis results agree with your run-time
behavior.

However, if your code uses extended precision, for instance using the GNU C flag -mfpmath=387,
your Polyspace analysis results might not agree with your run-time behavior in some corner cases.
See some examples of these corner cases in codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code prover desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a flag such as -
ffloat-store. For your Polyspace analysis, use all for rounding mode to account for double
rounding.

The Overflow check uses the rounding modes that you specify. For instance, the following table
shows the difference in the result of the check when you change your rounding modes.

2-239

2 Analysis Options

2-240

Rounding mode: to-nearest

Rounding mode: all

If results of floating-point operations are
rounded to nearest values:

large enough that the value nearest to
FLT MAX + epsl is greater than
FLT MAX. The Overflow check is red.

* In the second addition operation, eps2 is

FLT MAX + eps2is FLT MAX. The
Overflow check is green.

* In the first addition operation, eps1 is just

just small enough that the value nearest to

#include <float.h>
#define epsl 0x1pl03
#define eps2 0x0.FFFFFFpl03

float func(int ch) {
float left op = FLT MAX;
float right op 1 = epsl, \
right op 2 = eps2;
switch(ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);
default:
return 0;
}

Besides to-nearest mode, the Overflow check
also considers other rounding modes.

e In the first addition operation, in to-nearest
mode, the value nearest to FLT MAX +
epsl is greater than FLT MAX, so the
addition overflows. But if rounded towards
negative infinity, the result is FLT MAX, so
the addition does not overflow. Combining
these two rounding modes, the Overflow
check is orange.

* In the second addition operation, in to-
nearest mode, the value nearest to
FLT MAX + eps2is FLT MAX, so the
addition does not overflow. But if rounded
towards positive infinity, the result is
greater than FLT MAX, so the addition
overflows. Combining these two rounding
modes, the Overflow check is orange.

#include <float.h>
#define epsl 0x1pl03
#define eps2 0x0.FFFFFFpl03

float func(int ch) {
float left op = FLT MAX;
float right op 1 = epsl, \
right op 2 = eps2;
switch(ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);
default:
return 0;
}

}

If you set the rounding mode to all and obtain an orange Overflow check, to determine how the

overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: - float-rounding-mode
Value: to-nearest | all

Default: to-nearest

Example (Code Prover): polyspace-code-prover -sources file name -float-rounding-
mode all

Float rounding mode (- float-rounding-mode)

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
float-rounding-mode all

Version History
Introduced in R2016a

See Also
Overflow

Topics
“Specify Polyspace Analysis Options”

2-241

2 Analysis Options

2-242

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)

Allow left shift operations on a negative number

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 2-242.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative number is
undefined. Following the standard, the verification produces a red check on left shifts of negative
numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this option. Note
that allowing left shifts of negative numbers can reduce the cross-compiler portability of your code.

Settings

41 0n
The verification allows shift operations on a negative number, for instance, -2 << 2.
Off (default)

If a shift operation is performed on a negative number, the verification generates an error.

Command-Line Information

Parameter: -allow-negative-operand-in-shift

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -allow-negative-
operand-in-shift

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
allow-negative-operand-in-shift

See Also
Invalid shift operations

Allow negative operand for left shifts (-allow-negative-operand-in-shift)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

2-243

2 Analysis Options

2-244

Overflow mode for signed integer (-signed-
integer-overflows)

Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps the result
of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -signed-integer-overflows. See “Command-
Line Information” on page 2-247.

Why Use This Option

Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings

Default: forbid
forbid

Polyspace flags signed integer overflows. If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.
* Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers
that:
» After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.
+ After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 2147483646] after the overflow.
Polyspace does not analyze the printf () statement after the red overflow.

Overflow mode for signed integer (-signed-integer-overflows)

#include<stdio.h>
int getVal();

void funcl()
{
int i = 1;
i=1 << 30;
// Result of * operation overflows
i=1%x*2;
// Remaing code in current scope not analyzed
printf("sd", 1i);

void func2()

{

int j = getVal();

if (j > 0) {
// Range of j: [1..231-1]
// Result of * operation may overflow
j=3*2
// Range of j: even values in [2 .. 2147483646]
printf("sd", j);

}

Note that tooltips on operations with signed integers show (result is truncated) to indicate
the analysis mode. The message appears even if the Overflow check is green.

allow

Polyspace does not flag signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [-23!..2] or [2..23!-2] and the value of i wraps around
to - 231,

2-245

2 Analysis Options

2-246

#include<stdio.h>
int getVal();

void funcl()
{
int i = 1;
i=1 << 30;
// i = 23
i=1%*2;
// 1= -231
printf("sd", 1i);

void func2()

{
int j = getVal();
if (j > 0) {
// Range of j: [1..231-1]
j=3*2
// Range of j: even values in [-231..2] or [2..23!-2]
printf("sd", j);
}
}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis in this mode does not flag signed
integer overflows.

warn-with-wrap-around

Polyspace flags signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [-23..2] or [2..231-2] after the
overflow.

Similarly, i has value 23° before the red overflow and value -23! after it .

Overflow mode for signed integer (-signed-integer-overflows)

#include<stdio.h>
int getVal();

void funcl()
{
int i = 1;
i=1 << 30;
// 1= 2%
// Result of * operation overflows
i=1%x*2;
// 1= -23
printf("sd", 1i);

void func2()

{

int j = getVal();
if (j > 0) {
// Range of j: [1..231-1]
// Result of * operation may overflow
j=3*2
// Range of j: even values in [-231..2] or [2..23!-2]
printf("sd", j);

}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips

To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

In Polyspace Code Prover, overflowing signed constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with signed constants,
use the Polyspace Bug Finder checker Integer constant overflow.

Command-Line Information

Parameter: -signed-integer-overflows

Value: forbid | allow |warn-with-wrap-around

Default: forbid

Example (Code Prover): polyspace-code-prover -sources file name -signed-integer-
overflows allow

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
signed-integer-overflows allow

2-247

2 Analysis Options

Version History
Introduced in R2018b

See Also

Overflow mode for unsigned integer (-unsigned-integer-overflows) | -show-
similar-overflows | Overflow

Topics

“Specify Polyspace Analysis Options”

“Modify or Disable Code Prover Run-Time Checks”

2-248

Overflow mode for unsigned integer (-unsigned-integer-overflows)

Overflow mode for unsigned integer (-unsigned-
integer-overflows)

Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis wraps the
result of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -unsigned-integer-overflows. See
“Command-Line Information” on page 2-252.

Why Use This Option

Use this option to specify how Polyspace Code Prover reacts to unsigned integer overflows. You can
choose to flag an unsigned integer overflow and treat the code following this issue as compromised.
Alternatively, you might choose to allow unsigned integer overflows. Depending on the value of this
option, Polyspace makes different assumptions when analyzing the code that comes after an unsigned
overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.
* Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers
that:
+ After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

» After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 4294967294] after the overflow.
Polyspace does not analyze the printf () statement after the red overflow.

2-249

2 Analysis Options

2-250

#include<stdio.h>
unsigned int getVal();

void funcl()
{
unsigned int i = 1;
i=1 << 31;
// Result of * operation overflows
i=1%x*2;
// Remaing code in current scope not analyzed
printf("su", 1i);

void func2()

{
unsigned int j = getVal();
if (j > 0) {
// Range of j: [1..232-1]
// Result of * operation may overflow
=3 *2;
// Range of j: even values in [2 .. 4294967294]
printf("su", j);
}
}

Note that tooltips on operations with unsigned integers show (result is truncated) to
indicate the analysis mode. The message appears even if the Overflow check is green.

allow

Polyspace does not flag unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For instance,
MAX INT + 1 wraps to MIN INT. This behavior conforms to the ANSI C (ISO C++) standard.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [0..232-2]] and the value of i wraps around to 0.

Overflow mode for unsigned integer (-unsigned-integer-overflows)

#include<stdio.h>
unsigned int getVal();

void funcl()

{
unsigned int i = 1;
i=1 << 31;

//i=231
i=1%*2;
// 1=0

printf("su", 1i);

void func2()

{
unsigned int j = getVal();
if (j > 0) {
// Range of j: [1..232-1]
j=3*2
// Range of j: even values in [0 .. 4294967294]
printf("su", j);
}
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis does not flag unsigned integer
overflows.

warn-with-wrap-around

Polyspace flags unsigned integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow. For instance, INT MAX + 1
wraps to 0.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [0 .. 4294967294] after the overflow.

Similarly, i has value 23! before the red overflow and value 0 after it.

2-251

2 Analysis Options

#include<stdio.h>
unsigned int getVal();

void funcl()

{
unsigned int i = 1;
i=1 << 31;

//i=231
i=1%*2;
// 1=0

printf("su", 1i);

void func2()

{
unsigned int j = getVal();
if (j > 0) {
// Range of j: [1..232-1]
j=3*2
// Range of j: even values in [0 .. 4294967294]
printf("su", j);
}
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips

» To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

* In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with unsigned constants,
use the Polyspace Bug Finder checker Unsigned integer constant overflow.

* Code Prover does not show an overflow on bitwise operations on unsigned variables or sbit-s, for
instance, in this example:

volatile unsigned char Y;
Y = ~Y;

The verification considers that such bitwise operations are deliberate on your part and you intend
an automatic wrap-around in case the result of the operation overflows.

Command-Line Information
Parameter: -unsigned-integer-overflows
Value: forbid | allow |warn-with-wrap-around

2-252

Overflow mode for unsigned integer (-unsigned-integer-overflows)

Default: allow

Example (Code Prover): polyspace-code-prover -sources file name -unsigned-
integer-overflows allow

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
unsigned-integer-overflows allow

Version History
Introduced in R2018b

See Also

Overflow mode for signed integer (-signed-integer-overflows) | -show-similar-
overflows | Overflow

Topics

“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

2-253

2 Analysis Options

Disable checks for non-initialization (-disable-
initialization-checks)

Disable checks for non-initialized variables and pointers

Description

This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -disable-initialization-checks. See
“Command-Line Information” on page 2-255.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings

41 On
Polyspace Code Prover does not perform the following checks:

* Non-initialized local variable: Local variable is not initialized before being read.

* Non-initialized variable: Variable other than local variable is not initialized before
being read.

* Non-initialized pointer: Pointer is not initialized before being read.
* Return value not initialized: C function does not return value when expected.

Polyspace assumes that, at declaration:

» Variables have full-range of values allowed by their type.
* Pointers can be NULL-valued or point to a memory block at an unknown offset.

Off (default)

Polyspace Code Prover checks for non-initialization in your code. The software displays red
checks if, for instance, a variable is not initialized and orange checks if a variable is initialized
only on some execution paths.

Tips

» If you select this option, the software does not report most violations of MISRA C:2004 rule 9.1,
and MISRA (C:2012 Rule 9.1.

2-254

Disable checks for non-initialization (-disable-initialization-checks)

If you select this option, the number and type of orange checks in your code can change.

For instance, the following table shows an additional orange check with the option enabled.

Checks for Non-initialization Enabled

Checks for Non-initialization Disabled

void func(int flag) {
int varl,var2;
if(flag==0) {

varl=var2;
¥
else {

varl=0;
¥

var2=varl + 1;

}
In this example, the software produces:

* Ared Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the else
branch of the if statement exists.

* A green Non-initialized local variable
check on varl in the last statement. varl
has the assigned value 0.

* A green Overflow check on the +
operation.

void func(int flag) {
int varl,var2;
if(flag==0) {

varl=var2;
}
else {

varl=0;
}

var2=varl + 1;

}
In this example, the software:

* Does not produce Non-initialized local
variable checks. At initialization, the
software assumes that var2 has full range
of int values. Following the if statement,
because the software considers both if
branches, it assumes that varl also has
full range of int values.

* Produces an orange Overflow check on the
+ operation. For instance, if varl has the
maximum int value, adding 1 to it can
cause an overflow.

Command-Line Information

Parameter: -disable-initialization-checks

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -disable-
initialization-checks

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
disable-initialization-checks

See Also
Topics

“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

2-255

2 Analysis Options

2-256

Check that global variables are initialized after
warm reboot (-check-globals-init)

Check that global variables are assigned values in designed initialization code

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check whether all non-const global variables (and local static variables)
are explicitly initialized at declaration or within a section of code marked as initialization code.

To indicate the end of initialization code, you enter the line
#pragma polyspace end of init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -check-globals-init. See “Command-Line
Information” on page 2-259.

Why Use This Option

In a warm reboot, to save time, the bss segment of a program, which might hold variable values from
a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all non-const
variables without default values before execution. You can use this option to delimit the initialization
code and verify that all non-const global variables are indeed initialized in a warm reboot.

For instance, in this simple example, the global variable aVar is initialized in the initialization code
section but the variable anotherVar is not.

int aVar;
const int aConst = -1;
int anotherVar;

int main() {
aVar = aConst;

#pragma polyspace end of init
return 0;

}

Check that global variables are initialized after warm reboot (-check-globals-init)

Settings

“| On

Polyspace checks whether all global variables are initialized in the designated initialization code.
The initialization code starts from the beginning from main and continues up to the pragma
polyspace end of init.

The results are reported using the check Global variable not assigned a value in
initialization code.
Off (default)

Polyspace does not check for initialization of global variables in a designated code section.
However, the verification continues to check if a variable is initialized at the time of use. The
results are reported using the check Non-initialized variable.

Dependencies

You can use this option and designate a section of code as initialization code only if:

* Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).
* You set Source code language (-lang) toC.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

* Disable checks for non-initialization (-disable-initialization-checks)
* Verify files independently (-unit-by-unit)
* Show global variable sharing and usage only (-shared-variables-mode)

Tips

* You can use this option along with the option Verify initialization section of code
only (-init-only-mode) to check the initialization code before checking the remaining
program.

This approach has the following benefits compared to checking the entire code in one run:

* Run-time errors in the initialization code can invalidate analysis of the remaining code. You can
run a comparatively quicker check on the initialization code before checking the remaining
program.

* You can review results of the checker Global variable not assigned a value in
initialization code relatively easily.

Consider this example. There is an orange check on var because var might remain
uninitialized when the if and else if statements are skipped.

int var;

2-257

2 Analysis Options

2-258

int checkSomething(void);
int checkSomethingElse(void);

int main() {
int local_var;
if(checkSomething())
{

var=0;

}
else if(checkSomethingElse()) {

var=1l;
}
#pragma polyspace_end of_init
var=2;
local var = var;
return 0;

To review this check and understand when x might be non-initialized, you have to browse
through all instances of x on the Variable Access pane. If you check the initialization code
alone, only the code in bold gets checked and you have to browse through only the instances in
the initialization code.

» The check is only as good as your placement of the pragma polyspace end of init. For
instance:

Place the pragma only after initialization code ends.

Otherwise, a variable might appear falsely uninitialized.

Try to place the pragma directly in the main function, that is, outside a block. If you place the
pragma in a block, the check considers only those paths that end in the block.

All paths that end in the block might have a variable initialized but paths that skip the block
might let the variable go uninitialized. If you do place the pragma in a block, make sure that it
is okay if a variable stays uninitialized outside the block.

For instance, in this example, the variable var is initialized on all paths that end at the location
of the pragma. The check is green despite the fact that the if block might be skipped, letting
the variable go uninitialized.

int var;
int func();

int main() {
int err = func();
if(err) {
var = 0;
#pragma polyspace end of init

int a = var;
return 0;

}

The issue is detected by the checker if you place the pragma after the if block ends.

Check that global variables are initialized after warm reboot (-check-globals-init)

* Do not place the pragma in a loop.

If you place the pragma in a loop, you can see results that are difficult to interpret. For
instance, in this example, both aVar and anotherVar are initialized in one iteration of the
loop. However, the pragma only considers the first iteration of the loop when it shows a green
check for initialization. If a variable is initialized on a later iteration, the check is orange.

int aVar;
int anotherVar;

void main() {
for(int i=0; i<=1; i++) {
if(i == 0)
aVar = 0;
else
anotherVar = 0;
#pragma polyspace end of init

}

The check is red if you verify initialization code alone and do not initialize a variable in the first
loop iteration. To avoid these incorrect red or orange checks, do not place the pragma in a
loop.

* To determine the initialization of a structure, a regular Code Prover analysis only considers
fields that are used.

If you check initialization code only using the option Verify initialization section of
code only (-init-only-mode), the analysis covers only a portion of the code and cannot
determine if a variable is used beyond this portion. Therefore, the checks for initialization
consider all structure fields, whether used or not.

Command-Line Information

Parameter: -check-globals-init

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -check-globals-
init

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
check-globals-init

Version History
Introduced in R2020a

See Also

Verify initialization section of code only (-init-only-mode) | Global variable
not assigned a value in initialization code

Topics

“Specify Polyspace Analysis Options”

“Modify or Disable Code Prover Run-Time Checks”

“Code Prover Assumptions About Global Variable Initialization” on page 14-15

2-259

2 Analysis Options

2-260

Detect stack pointer dereference outside scope (-
detect-pointer-escape)

Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its scope via
dangling pointers. Such an access can happen, for example, when a function returns a pointer to a
local variable and you dereference the pointer outside the function. The dereference causes
undefined behavior because the local variable that the pointer points to does not live outside the
function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 2-261.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings

+| On

The Illegally dereferenced pointer check performs an additional task, besides its usual
specifications. When you dereference a pointer, the check also determines if you are accessing a
variable outside its scope through the pointer. The check is:

* Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice in your
code. In both calls, when you perform the dereference *ptr, ptr is pointing to variables
outside their scope. Therefore, the Illegally dereferenced pointer check is red.

* Orange, if only some of the variables that the pointer points to are accessed outside their
scope.

* Green, if none of the variables that the pointer points to are accessed outside their scope, and
other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red Illegally
dereferenced pointer check on *ptr. Otherwise, the Illegally dereferenced pointer check on
*ptr is green.

void func2(int *ptr) {
*ptr = 0;

Detect stack pointer dereference outside scope (-detect-pointer-escape)

}

int* funcl(void) {
int ret = 0;
return &ret ;

}

void main(void) {
int* ptr = funcl()
func2(ptr) ;

}

The Result Details pane displays a message indicating that ret is accessed outside its scope.

i Tllegally dereferenced pointer

Error: pointer is outside its bounds
This check may be a path-related issue, which is not dependent on input values

Dereference of parameter 'ptr' (pointer to int 32, size: 32 bits):
Pointer is not null.
Points to 4 bytes at offset 0 in buffer of 4 bytes, so is within bounds (if memary is allocated).
Pointer may point to variable or field of variable:

'ret', local to function 'funcl’, et is accessed outside its scope.

Off (default)

When you dereference a pointer, the Illegally dereferenced pointer check does not check for
whether you are accessing a variable outside its scope. The check is green even if the pointer
dereference is outside the variable scope, as long as it satisfies these requirements:

* The pointer is not NULL.

* The pointer points within the memory buffer.

Tips

The detection of stack pointer deference outside scope does not apply to certain types of pointers. For
specific limitations, see “Limitations of Polyspace Verification” on page 14-42.

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -detect-pointer-
escape

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
detect-pointer-escape

Version History
Introduced in R2015a

See Also
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

2-261

2 Analysis Options

“Modify or Disable Code Prover Run-Time Checks”

2-262

Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)

Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as it points
within the structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-264 for other options you must also enable.

Command line and options file: Use the option -allow-ptr-arith-on-struct. See “Command-
Line Information” on page 2-264.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a pointer to a
structure field, you can perform pointer arithmetic and use the result to access another structure
field.

Settings

+| On

A pointer assigned to a structure field can point outside the bounds imposed by the field as long
as it points within the structure. For instance, in the following code, unless you use this option,
the verification will produce ared I1legally dereferenced pointer check:

void main(void) {

struct S {char a; char b; int c;} x;

char *ptr = &x.b;

ptr ++;

*ptr = 1; // Red on the dereference, because ptr points outside x.b

}

Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by the field.

Tips

* The verification does not allow a pointer with negative offset values. This behavior occurs
irrespective of whether you choose the option Enable pointer arithmetic across fields.

» Using this option can slightly increase the number of orange checks. The option relaxes the
constraint that a pointer to a structure field cannot point to other fields of the structure. In

2-263

2 Analysis Options

2-264

exchange for relaxing this constraint, the verification loses precision on the boundary of fields
within a structure and treats the structure as a whole. Pointer dereferences that were previously
green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to work around
red checks from pointer arithmetic within a structure.

» Before using this option, consider the costs of using pointer arithmetic across different fields of a
structure.

Unlike an array, members of a structure can have different data types. For efficient storage,
structures use padding to accommodate this difference. When you increment a pointer pointing to
a structure member, you might not point to the next member. When you dereference this pointer,
you cannot rely on what you are reading or writing to.

Dependency

This option is available only if you set Source code language (-lang) to C.

Command-Line Information

Parameter: -allow-ptr-arith-on-struct

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -allow-ptr-
arith-on-struct

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-bytes) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Allow incomplete or partial allocation of structures (-size-in-bytes)

Allow incomplete or partial allocation of structures
(-size-in-bytes)

Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure but has a
sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a larger
structure. The pointer resulting from the cast has sufficient buffer for only some fields of the larger
structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -size-in-bytes. See “Command-Line
Information” on page 2-266.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a structure
even when the buffer allowed for the pointer is not sufficient for all the structure fields.

Settings

4/ On
When a pointer with insufficient buffer is dereferenced, Polyspace does not produce an Illegally
dereferenced pointer error, as long as the dereference occurs within allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two fields of the
structure BIG. Therefore, with the option on, Polyspace considers that the first two dereferences
are valid. The third dereference takes p outside its allowed buffer. Therefore, Polyspace produces
an Illegally dereferenced pointer error on the third dereference.

#include <stdlib.h>

typedef struct little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c; } BIG;

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p!'= ((void *) 0)) {
p->a = 0 ;

2-265

2 Analysis Options

2-266

p->b =0 ;
p->c = 0 ; // Red IDP check
}

}

Off (default)

Polyspace does not allow dereferencing a pointer to a structure if the pointer does not have
sufficient buffer for all fields of the structure. It produces an Illegally dereferenced pointer
error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for the first
two fields of the structure BIG, Polyspace considers that dereferencing p is invalid.

#include <stdlib.h>

typedef struct little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c; } BIG;

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p!'= ((void *) 0)) {
p->a = 0 ; // Red IDP check
p->b =0 ;
p->c = 0 ;
}
}
Tips

If you do not turn on this option, you cannot point to the field of a partially allocated structure.

For instance, in the preceding example, if you do not turn on the option and perform the
assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces an
Illegally dereferenced pointer error.

Using this option can slightly increase the number of orange checks.

Command-Line Information

Parameter: -size-in-bytes

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -size-in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources file name -
size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

Allow incomplete or partial allocation of structures (-size-in-bytes)

“Modify or Disable Code Prover Run-Time Checks”

2-267

2 Analysis Options

Permissive function pointer calls (-permissive-
function-pointer)

Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the function pointer
does not match the type of the function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-270 for other options you must also enable.

Command line and options file: Use the option -permissive-function-pointer. See
“Command-Line Information” on page 2-270.

Why Use This Option

By default, Code Prover does not recognize calls through function pointers when a type mismatch
occurs. Fix the type mismatch whenever possible.

Use this option if:

* You cannot fix the type mismatch, and

* The analysis does not cover a significant portion of your code because calls via function pointers
are not recognized.

With sources that use function pointers extensively, enabling this option can cause loss in
performance. This loss occurs because the verification has to consider more complex call graphs and
more execution paths. In rare cases, the verification can run out of memory.

Settings

“| On

The verification must allow function pointer calls where the type of the function pointer does not
match the type of the function. For instance, a function declared as int f(int*) can be called
by a function pointer declared as int (*fptr) (void*).

Only type mismatches between pointer types are allowed. Type mismatches between nonpointer
types cause compilation errors. For instance, a function declared as int f(int) cannot be
called by a function pointer declared as int (*fptr) (double).

Off (default)

The verification must require that the argument and return types of a function pointer and the
function it calls are identical.

2-268

Permissive function pointer calls (-permissive-function-pointer)

Tips

Type mismatches are detected with the check Correctness condition.

Using this option can increase the number of orange checks. Some of these orange checks can
reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer type and the
function that it points to:

In this example, the function pointer obj fptr has an argument that is a pointer to a three-
element array. However, it points to a function whose corresponding argument is a pointer to a
four-element array. In the body of foo, four array elements are read and incremented. The
fourth element does not exist and the ++ operation reads a meaningless value.

typedef int array three elements[3];
typedef void (*fptr)(array three elements*);

typedef int array four_elements[4];
void foo(array four elements*);

void main() {

array_three elements arr[3] = {0,0,0};
array_three elements *ptr;

fptr obj fptr;

ptr = &arr;
obj fptr = &foo;

//Call via function pointer
obj fptr(&ptr);
}

void foo(array four elements* x) {
int 1 = 0;
int *current pos;

for(i = 0; i< 4; i++) {
current pos = (*x) + i;
(*current _pos)++;

}

}

Without this option, an orange Correctness condition check appears on the call

obj fptr(&ptr) and the function foo is not verified. If you use this option, the body of foo
contains several orange checks. Review the checks carefully and make sure that the type
mismatch does not cause issues.

In this example, the function pointer has an argument that is a pointer to a structure with
three float members. However, the corresponding function argument is a pointer to an
unrelated structure with one array member. In the function body, the strlen function is used
assuming the array member. Instead the strlen call reads the float members and can read
meaningless values, for instance, values stored in the structure padding.

2-269

2 Analysis Options

#include <string.h>
struct point {
float x;
float y;
float z;
}i
struct message {
char msg[10] ;
}i

void foo(struct message*);

void main() {
struct point pt = {3.14, 2048.0, -1.0} ;
void (*obj fptr)(struct point *) ;

obj fptr = &foo;
//Call via function pointer
obj fptr(&pt);

}

void foo(struct message* x) {
int y = strlen(x->msg) ;
}

Without this option, an orange check appears on the call obj fptr(&pt) and the function
foo is not verified. If you use this option, the function contains an orange check on the strlen
call. Review the check carefully and make sure that the type mismatch does not cause issues.

Dependency

This option is available only if you set Source code language (-lang) to C.

Command-Line Information

Parameter: -permissive-function-pointer

Default: Off

Example (Code Prover): polyspace-code-prover -sources file name -lang C -
permissive-function-pointer

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
lang ¢ -permissive-function-pointer

See Also
Correctness condition
Topics

“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

2-270

Consider non finite floats (-allow-non-finite-floats)

Consider non finite floats (-allow-non-finite-
floats)

Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point operations.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-non-finite-floats. See “Command-
Line Information” on page 2-273.

Why Use This Option

Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the analysis
terminates the execution thread where a division by zero occurs and does not consider that the result
could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your code, set
this option. When you set this option and a division by zero occurs for instance, the execution thread
continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in your code.
Using the option alone effectively disables many numerical checks on floating point operations. If you
have generally accounted for infinities and NaNs, but you are not sure that you have considered all
situations, set these additional options:

e Infinities (-check-infinite): Usewarn-first.
e NaNs (-check-nan): Usewarn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By default, a
Bug Finder analysis does not incorporate infinities and NaNs.

Settings

41 On
The analysis allows infinities and NaNs. For instance, in this mode:

* The analysis assumes that floating-point operations can produce results such as infinities and
NaNs.

2-271

2 Analysis Options

2-272

Tips

By using options Infinities (-check-infinite) and NaNs (-check-nan), you can
choose to highlight operations that produce nonfinite results and stop the execution threads
where the nonfinite results occur. These options are not available for a Bug Finder analysis.

The analysis assumes that floating-point variables with unknown values can have any value
allowed by their type, including infinite or NaN. Floating-point variables with unknown values
include volatile variables and return values of stubbed functions.

Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

The Code Prover analysis produces a red check on a floating-point operation that produces an
infinity or a NaN as the only possible result on all execution paths. The verification produces
an orange check on a floating-point operation that can potentially produce an infinity or NaN.

The Code Prover analysis assumes that floating-point variables with unknown values are full-
range but finite.

The Bug Finder analysis shows comparisons with infinity using isinf as dead code.

The IEEE 754 Standard allows special quantities such as infinities and NaN so that you can handle
certain numerical exceptions without aborting the code. Some implementations of the C standard
support infinities and NaN.

If your compiler supports infinities and NaNs and you account for them explicitly in your code,
use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative action.
Therefore, you do not want the verification to highlight division operations that result in
infinity.

If your compiler supports infinities and NaNs but you are not sure if you account for them
explicitly in your code, use this option so that the verification incorporates infinities and NaNs.
Use the options -check-nan and -check-infinite with argument warn so that the
verification highlights operations that result in infinities and NaNs, but does not stop the
execution thread. These options are not available for a Bug Finder analysis.

If you run a Code Prover analysis and use this option, checkers for overflow, division by zero and
other numerical run-time errors are disabled. See “Numerical Checks”.

If you run a Bug Finder analysis and use this option:

These checkers are disabled:
* Bug Finder defects: Float conversion overflow, Float division by zero,
Invalid use of standard library floating point routine, Float overflow.

* CERT C rules and recommendation: ,CERT C: Rule FLP34-C, CERT C: Rule FLP32-C,
CERT C: Rec. FLPO3-C, CERT C: Rec. FLPO6-C.

* CERT C++ rules: CERT C++: FLP34-C, CERT C++: FLP32-C.
¢ AUTOSAR C++14 rule: AUTOSAR C++14 Rule A0-4-4.

* MISRA C:2004 rule: MISRA C:2004 rule 20.3.

These checker might show less violations: MISRA C:2012 Dir 4.1

Consider non finite floats (-allow-non-finite-floats)

* These checkers might show false positives: Floating point comparison with equality
operators, AUTOSAR C++14 Rule M6-2-2,MISRA C:2012 Dir 1.1.

» Ifyou select this option, the number and type of Code Prover checks in your code can change.

For instance, in the following example, when you select the option, the results have one less red
check and three more green checks.

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by zero If you select this option, Code Prover does not
error and stops verification. check for a Division by zero error.
double func(void) { double func(void) {
double x=1.0/0.0; double x=1.0/0.0;
double y=1.0/x; double y=1.0/x;
double z=x-x; double z=x-x;
return z; return z;
} }
The analysis assumes that dividing by zero
results in:

* Value of x equal to Inf
* Value of y equal to 0.0
e Value of z equal to NaN

In your analysis results in the Polyspace user
interface, if you place your cursor on y and z,
you can see the nonfinite values Inf and NaN
respectively in the tooltip.

Command-Line Information

Parameter: -allow-non-finite-floats

Default: Off

Example (Bug Finder): polyspace-bug-finder -sources file name -allow-non-finite-
floats

Example (Code Prover): polyspace-code-prover -sources file name -allow-non-
finite-floats

Example (Bug Finder Server): polyspace-bug-finder-server -sources file name -
allow-non-finite-floats

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
allow-non-finite-floats

Version History
Introduced in R2016a

See Also
Infinities (-check-infinite) |NaNs (-check-nan) | “Numerical Defects” | “Numerical
Checks”

2-273

2 Analysis Options

Topics

“Specify Polyspace Analysis Options”

“Modify or Disable Code Prover Run-Time Checks”
“Modify Default Behavior of Bug Finder Checkers”

2-274

Infinities (-check-infinite)

Infinities (-check-infinite)

Specify how to handle floating-point operations that result in infinity

Description

This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.
Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 2-276 for other options you must also enable.

Command line and options file: Use the option -check-infinite. See “Command-Line
Information” on page 2-276.

Why Use This Option
Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
double x=1.0/0.0;
return x;

}

warn-first

The verification produces a check on the operation. The check determines if the result of the
operation is infinite when the operands themselves are not infinite. The verification does not
terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible result on all
execution paths and the operands themselves are never infinite, the check is red. If the operation
can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
double x=1.0/0.0;

2-275

2 Analysis Options

2-276

return x;

}

Even though the Overflow check on the / operation is red, the verification continues. For
instance, a green Non-initialized local variable check appears on x in the return statement.

forbid

The verification produces a check on the operation and terminates the execution thread that
produces infinity.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
double x=1.0/0.0;
return x;

}

The verification stops because the Overflow check on the / operation is red. For instance, a Non-
initialized local variable check does not appear on x in the return statement.

Dependencies

To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information

Parameter: -check-infinite

Value: allow |warn-first | forbid

Default: allow

Example (Code Prover): polyspace-code-prover -sources file name -check-infinite
forbid

Example (Code Prover Server): polyspace-code-prover-server -sources file name -
check-infinite forbid

Version History
Introduced in